首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Psoralen crosslinks were site-specifically placed in plasmid pBR322 near the BamHI site in the tet gene by enzymatically inserting mercurated nucleotides and reacting at the target site with a sulfhydryl-containing psoralen. The damaged plasmid was repaired in SOS-induced E. coli cells. Mutants were detected by colony hybridization to oligonucleotides in the target region, and their sequences were determined. The mutations are all base substitutions, 80% transitions and 20% transversions, similar to the mutations previously identified by the loss of tetracycline resistance. However, the mutation sites detected by a physical method, unconstrained by phenotypic changes, follow a broader distribution than those identified genetically. They occur primarily at favored psoralen crosslinking sites, where T-T and T-C interstrand crosslinks can be formed. A majority of these mutations are silent.  相似文献   

3.
Mogi S  Oh DH 《DNA Repair》2006,5(6):731-740
To further define the molecular mechanisms involved in processing interstrand crosslinks, we monitored the formation of phosphorylated histone H2AX (gamma-H2AX), which is generated in chromatin near double strand break sites, following DNA damage in normal and repair-deficient human cells. Following treatment with a psoralen derivative and ultraviolet A radiation doses that produce significant numbers of crosslinks, gamma-H2AX levels in nucleotide excision repair-deficient XP-A fibroblasts (XP12RO-SV) increased to levels that were twice those observed in normal control GM637 fibroblasts. A partial XPA revertant cell line (XP129) that is proficient in crosslink removal, exhibited reduced gamma-H2AX levels that were intermediate between those of GM637 and XP-A cells. XP-F fibroblasts (XP2YO-SV and XP3YO) that are also repair-deficient exhibited gamma-H2AX levels below even control fibroblasts following treatment with psoralen and ultraviolet A radiation. Similarly, another crosslinking agent, mitomycin C, did not induce gamma-H2AX in XP-F cells, although it did induce equivalent levels of gamma-H2AX in XPA and control GM637 cells. Ectopic expression of XPF in XP-F fibroblasts restored gamma-H2AX induction following treatment with crosslinking agents. Angelicin, a furocoumarin which forms only monoadducts and not crosslinks following ultraviolet A radiation, as well as ultraviolet C radiation, resulted only in weak induction of gamma-H2AX in all cells, suggesting that the double strand breaks observed with psoralen and ultraviolet A treatment result preferentially following crosslink formation. These results indicate that XPF is required to form gamma-H2AX and likely double strand breaks in response to interstrand crosslinks in human cells. Furthermore, XPA may be important to allow psoralen interstrand crosslinks to be processed without forming a double strand break intermediate.  相似文献   

4.
Much interest has surrounded the question of the removal of psoralen interstrand crosslinks in DNA of eukaryotic organisms. A commonly employed method for the study of psoralen repair is alkaline elution. In this study we have used alkaline elution to assess psoralen crosslink repair in human lymphocytes. The lymphocytes were treated with 8-methoxypsoralen or 4,5′,8-trimethylpsoralen and allowed to repair for different periods of time. Analysis by alkaline elution showed elution patterns compatible with crosslink removal. When the crosslink removal under comparable conditions was studied by the use of electron microscopy under totally denaturing conditions, no repair of the crosslinks could be detected.  相似文献   

5.
6.
7.
DNA interstrand crosslinks are processed by multiple mechanisms whose relationships to each other are unclear. Xeroderma pigmentosum-variant (XP-V) cells lacking DNA polymerase eta are sensitive to psoralen photoadducts created under conditions favoring crosslink formation, suggesting a role for translesion synthesis in crosslink repair. Because crosslinks can lead to double-strand breaks, we monitored phosphorylated H2AX (gamma-H2AX), which is typically generated near double-strand breaks but also in response to single-stranded DNA, following psoralen photoadduct formation in XP-V fibroblasts to assess whether polymerase eta is involved in processing crosslinks. In contrast to conditions favoring monoadducts, conditions favoring psoralen crosslinks induced gamma-H2AX levels in both XP-V and nucleotide excision repair-deficient XP-A cells relative to control repair-proficient cells; ectopic expression of polymerase eta in XP-V cells normalized the gamma-H2AX response. In response to psoralen crosslinking, gamma-H2AX as well as 53BP1 formed coincident foci that were more numerous and intense in XP-V and XP-A cells than in controls. Psoralen photoadducts induced gamma-H2AX throughout the cell cycle in XP-V cells. These results indicate that polymerase eta is important in responding to psoralen crosslinks, and are consistent with a model in which nucleotide excision repair and polymerase eta are involved in processing crosslinks and avoiding gamma-H2AX associated with double-strand breaks and single-stranded DNA in human cells.  相似文献   

8.
This paper evaluates methods to measure crosslinkage due to psoralen plus light in total DNA and in specific sequences. DNA exposed in cells or in vitro to a bifunctional psoralen and near ultraviolet light accumulates interstrand crosslinks. Crosslinkage is the DNA mass fraction that is attached in both strands to a crosslink. We show here biochemical methods to measure psoralen photocrosslinkage accurately in total DNA. We also describe methods to measure photocrosslinkage indirectly, in specific sequences, by nucleic acid hybridization. We show that a single 4,5',8-trimethylpsoralen (TMP) crosslink causes at least 50 kbp of alkali-denatured DNA contiguous in both strands with it to snap back into the duplex form when the denatured preparation is returned to neutral pH. This process was so efficient that the DNA was not nicked by the single-strand nuclease S1 at 100-fold excess after snapping back. Uncrosslinked DNA was digested to acid-soluble material by the enzyme. Crosslinkage therefore equals the fraction of S1-resistant nucleotide in this kind of experiment. We alkali-denatured DNA samples crosslinked to varying degrees by varying TMP concentration at constant light exposure. We then measured crosslinkage by ethidium bromide (EtBr) fluorometry at pH 11.8; by EtBr fluorometry at neutral pH of S1 digests of the DNA; and by the fraction of radioactivity remaining acid insoluble in S1-digests of DNA labeled uniformly with [3H]deoxythymidine. These assays measure distinct physical properties of crosslinked DNA. Numerical agreement is expected only when all three measurements are accurate. Under optimum conditions, the three methods yielded identical results over the range of measurement. Using alkaline EtBr fluorescence in crude cell lysates, we detected crosslinks at frequencies in the range of 1.6 X 10(-7) per base pair. These levels were compatible with cell survival, attesting to the sensitivity of the measurement system. Crosslinkage affected hybridization as well. One crosslink prevented all alkali-denatured DNA contiguous in both strands with it from hybridizing to complementary DNA either on solid supports or in solution. Strand-length effects on crosslinkage and on reassociation caused solution hybridization levels to exceed those predicted by simple theory. In a quantitative, dot-blotting assay hybridization was linear up to membrane saturation by denatured, uncrosslinked DNA of any strand length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We studied the repair of psoralen adducts in the pol I-transcribed ribosomal RNA (rRNA) genes of excision repair competent Chinese hamster ovary (CHO) cell lines, their UV sensitive mutant derivatives, and their UV resistant transformants, which express a human excision repair gene. In the parental cell line CHO-AA8, both monoadducts and interstrand crosslinks are removed efficiently from the rRNA genes, whereas neither adduct is removed in the UV sensitive derivative UV5; removal of both adducts is restored in the UV resistant transformant CHO-5T4 carrying the human excision repair gene ERCC-2. In contrast, removal of psoralen adducts from the rRNA genes is not detected in another parental CHO cell line CHO-9, neither in its UV sensitive derivative 43-3B, nor in its UV resistant transformant 83-G5 carrying the human excision repair gene ERCC-1. In contrast to such intergenomic heterogeneity of repair, persistence of psoralen monoadducts during replication of the rRNA genes occurs equally well in all CHO cell lines tested. From these data, we conclude that: 1) the repair efficiency of DNA damage in the rRNA genes varies between established parental CHO cell lines; 2) the repair pathways of intrastrand adducts and interstrand crosslinks in mammalian cells share, at least, one gene product, i.e., the excision repair gene ERCC-2; 3) replicational bypass of psoralen monoadducts at the CHO rRNA locus occurs similarly on both DNA strands.  相似文献   

10.
Mechanism of replication-coupled DNA interstrand crosslink repair   总被引:2,自引:0,他引:2  
DNA interstrand crosslinks (ICLs) are toxic DNA lesions whose repair occurs in the S phase of metazoans via an unknown mechanism. Here, we describe a cell-free system based on Xenopus egg extracts that supports ICL repair. During DNA replication of a plasmid containing a site-specific ICL, two replication forks converge on the crosslink. Subsequent lesion bypass involves advance of a nascent leading strand to within one nucleotide of the ICL, followed by incisions, translesion DNA synthesis, and extension of the nascent strand beyond the lesion. Immunodepletion experiments suggest that extension requires DNA polymerase zeta. Ultimately, a significant portion of the input DNA is fully repaired, but not if DNA replication is blocked. Our experiments establish a mechanism for ICL repair that reveals how this process is coupled to DNA replication.  相似文献   

11.
Psoralen photoreaction produces covalent monoadducts and interstrand crosslinks in DNA. The interstrand DNA crosslinks are complex double strand lesions that require the involvement of multiple pathways for repair. Homologous recombination, which can carry out error-free repair, is a major pathway for crosslink repair; however, some recombination pathways can also produce DNA rearrangements. Psoralen photoreaction-induced recombination in yeast was measured using direct repeat substrates that can detect gene conversions, a form of conservative recombination, as well as deletions and triplications, which generate gene copy number changes. In repair-proficient cells the major products of recombination were gene conversions, along with substantial fractions of deletions. Deficiencies in DNA repair pathways increased non-conservative recombination products. Homologous recombination-deficient rad51, rad54, and rad57 strains had low levels of crosslink-induced recombination, and most products were deletions produced by single strand annealing. Nucleotide excision repair-deficient rad1 and rad2 yeast had increased levels of triplications, and rad1 cells had lower crosslink-induced recombination. Deficiencies in post-replication repair increased crosslink-induced recombination and gene copy number changes. Loss of REV3 function, in the error-prone branch, and of RAD5 and UBC13, in the error-free branch, produced moderate increases in deletions and triplications; rad18 cells, deficient in both post-replication repair sub-pathways, exhibited hyperrecombination, with primarily non-conservative products. Proper functioning of all the DNA repair pathways tested was required to maintain genomic stability and avoid gene copy number variation in response to interstrand crosslinks.  相似文献   

12.
Repair of 8-methoxypsoralen monoadducts in mouse lymphoma cells   总被引:1,自引:0,他引:1  
Studies of the repair of DNA lesions at biologically important doses is extremely difficult for most mutagens. With 8-methoxypsoralen (8-MOP) plus longwave ultraviolet light (UVA) as the lesion-inducing agent, however, it is easy to manipulate the relative frequency of different DNA adducts by means of a special experimental protocol (the tap-and-test protocol) and this can be used to measure repair of DNA adducts. Three classes of photoadducts are produced by 8-MOP plus UVA treatment: 3,4-cyclobutane monoadducts, 4',5'-cyclobutane monoadducts, and 8-MOP-DNA interstrand crosslinks. A monoadduct is formed when a photoactivated 8-MOP molecule reacts with a pyrimidine base. An 8-MOP-DNA interstrand crosslink is formed when an existing monoadduct is photoactivated to react with another pyrimidine base on the opposite DNA strand. Thus monoadducts are formed by absorption of one photon of light and crosslinks by absorption of two. In the tap-and-test experiments, cells were exposed to UVA in the presence of 8-MOP and then re-exposed to UVA in the absence of free 8-MOP so that only crosslinks can be produced by the second UVA treatment. By means of this technique we have previously shown that DNA crosslinks are much more effective than monoadducts at producing chromosomal damage (sister-chromatid exchanges and micronuclei) but not mutations (Liu-Lee et al., 1984). If L5178Y mouse lymphoma cells were able to remove monoadducts, incubation prior to the second UVA treatment should lead to decreases in the effect of re-irradiation, because fewer monoadducts would be available for crosslink formation. In this way, we have found that psoralen monoadducts are repaired in these cells and that about 70% of those capable of crosslink formation are removed or otherwise made unavailable for crosslink formation in 6 h.  相似文献   

13.
14.
Triple helix-forming oligonucleotides (TFOs) represent potentially powerful tools to artificially modulate gene activity. In particular, they can be used to specifically introduce a lesion into a selected target sequence: interstrand crosslinks and monoadducts can be introduced via TFOs coupled to psoralen. The efficiency of these strategies depends on the cell ability to repair these lesions, an issue which is still controversial. Here we show, using psoralen-coupled TFOs and the yeast as a convenient cellular test system, that interstrand crosslinks are quantitatively poorly repaired, resulting in an efficient modification of target gene activity. In addition, these lesions result in the introduction of mutations in a high proportion of cells. We show that these mutations are generated by the Error-Prone Repair pathway, alone or in combination with Nucleotide Excision Repair. Taken together, these results suggest that TFOs coupled to psoralen could be used to inactivate a gene with significant efficiency.  相似文献   

15.
Summary A model of the sister chromatid exchange (SCE) process is outlined as a replication mechanism to bypass DNA crosslinks. The model suggests that when normal bidirectional replication advances from both sides towards a crosslink along the two opposite parental strands, the complementary parental strand segments can be temporarily displaced at each contralateral 5 side from the crosslink. The free ends produced in this first step will be terminally aligned but will have opposite polarity. The second step of the bypass can, however, be completed by either of two rejoining processes—terminal ligation of the free ends via nascent Okazaki pieces or aberrant complementation by overlapping the free ends. This bypass mechanism (1) allows replication to continue past a crosslink leaving it intact but (2) results in the switching of parental strands and their attached incomplete nascent strands above and below the crosslink site producing an exchange between sister chromatids. This model is compatible with the findings of current SCE studies using the new BUDR/stain techniques as well as with previous autoradiographic studies. It also suggests that the chromatid breaks and deletions in Fanconi's Anemia represent a defect in step two of the replication bypass mechanism and that the high frequency of SCE's and quadriradials in Bloom's Syndrome represent the SCE overload effects of a defect in crosslink repair.  相似文献   

16.
17.
DNA damage by agents crosslinking the strands presents a formidable challenge to the cell to repair for survival and to repair accurately for maintenance of genetic information. It appears that repair of DNA crosslinks occurs in a path involving double strand breaks (DSBs) in the DNA. Mammalian cells have multiple systems involved in the repair response to such damage, including the Fanconi anemia pathway that appears to be directly involved, although the mechanisms and site of action remain elusive. A particular finding relating to deficiency of the Fanconi anemia pathway is the observation of chromosomal radial formations after ICL damage. The basis of formation of such chromosomal aberrations is unknown although they appear secondarily to DSBs. Here we review the processes involved in response to DNA interstrand crosslinks which might lead to radial formation and the role of the nucleotide excision repair gene, ERCC1, which is required for a normal response, not just to DNA crosslinks, but also for DSBs at collapsed replication forks caused by substrate depletion. J. Cell. Physiol. 220: 569–573, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Summary Fanconi anaemia (FA) lymphocytes were tested for their susceptibility to chromosomal breakage by cis-diamminedichloroplatinum (II) [cis-Pt(II)] and its stereoisomer trans-diamminedichloroplatinum (II) [trans-Pt(II)]. Unlike trans-Pt(II), which is a rather inefficient clastogen, cis-Pt(II) is very efficient in inducing chromosomal breakage in FA cells at concentrations that hardly affect control cells. As both cis-Pt(II) and trans-Pt(II) are capable of inducing DNA interstrand crosslinks but only cis-Pt(II) can induce DNA intra-strand crosslinks, this result suggests that FA cells may be specifically sensitive to the intrastrand type of DNA crosslink.  相似文献   

19.
The sequences flanking a psoralen interstrand cross-link may determine how it is repaired. Our comparison of the Escherichia coli UvrABC endonuclease incision of a variety of specific cross-link sequences in a single natural DNA fragment showed that DNA base composition determines which of two cross-linked DNA strands will be incised. G/C enrichment of the region 6-12 bases 5' of the modified T on the furan-side strand results in preferential incision of the furan-side strand. When the G/C-rich region is on the 3' side, or on neither side, incisions occur on either strand. These effects of DNA base composition suggest that UvrAB can bind in two ways to a psoralen cross-link.  相似文献   

20.
The antitumor agent cis-diamminedichloroplatinum(II) (cisplatin) introduces cytotoxic DNA damage predominantly in the form of intrastrand crosslinks between adjacent purines. Binding assays using a series of duplex oligonucleotides containing a single 1,2 diguanyl intrastrand crosslink indicate that human cell extracts contain factors that preferentially recognise this type of damage when the complementary strand contains T opposite the 3', and C opposite the 5'guanine in the crosslink. Under the conditions of the band-shift assay used, little binding is observed if the positions of the T and C are reversed in the complementary strand. Similarly, duplexes containing CC or TT opposite the crosslink are recognised relatively poorly. The binding activity is absent from extracts of the colorectal carcinoma cell lines LoVo and DLD-1 in which the hMutSalpha mismatch recognition complex is inactivated by mutation. Extensively purified human hMutSalpha exhibits the same substrate preference and binds to the mismatched platinated DNA at least as well as to an identical unplatinated duplex containing a single G.T mismatch. It is likely, therefore, that human mismatch repair may be triggered by 1,2 diguanyl intrastrand crosslinks that have undergone replicative bypass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号