首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
The terminal fragments (EJ and EM) of the XbaI-E transforming segment of human cytomegalovirus can independently induce the tumorigenic conversion of immortalized cells. To study their interaction, Rat-2 cells were transfected singly or with a combination of cloned EJ and EM DNAs. Large transformed foci were induced at a 10-fold higher frequency by EJ plus EM than by either DNA fragment alone. Focus-derived lines transformed by EJ plus EM produced tumors in syngeneic rats at a much faster rate (5 to 7 days) than did cell lines transformed by EJ or EM alone (25 to 35 days). Southern hybridizations showed that EM-homologous DNA was retained, exhibiting a complex pattern of multiple and amplified bands in EJ-plus-EM lines compared to a simple pattern in EM-induced lines. EJ DNA was not detected in the single or double transformants. The levels of p29, a 29-kilodalton transformation-sensitive marker in Rat-2 cells, were decreased 10- to 100-fold in cell lines transformed by EJ or EM fragment alone. Synthesis of p29 was shut off in EJ- plus-EM transformants. These data demonstrate that two unlinked transforming regions of human cytomegalovirus can cooperate to produce an aggressive tumorigenic phenotype.  相似文献   

2.
Multiple transforming regions of human cytomegalovirus DNA.   总被引:7,自引:4,他引:3       下载免费PDF全文
The transforming (focus forming) activity of defined cloned DNA fragments from human cytomegalovirus Towne and AD169 was carried out in immortalized rodent cells. The frequency of focus formation in NIH 3T3 cells by Towne XbaI fragment E was 80- to 100-fold higher than that observed with Towne XbaI fragments AO, O, C, or carrier DNA alone but was similar to that observed with pCM4127, a transforming fragment from HCMV AD169 (J. A. Nelson, B. Fleckenstein, D. A. Galloway, and J. K. McDougall, J. Virol. 43:83-91, 1982; J. A. Nelson, B. Fleckenstein, G. Jahn, D. A. Galloway, and J. K. McDougall, J. Virol. 49:109-115, 1984). Foci were first detected in Towne XbaI fragment E-transfected NIH 3T3 cells at 5 to 6 weeks posttransfection, whereas foci were detected at 2 to 3 weeks after transfection with AD169 pCM4127. Digestion of Towne XbaI fragment E with BamHI did not significantly reduce its focus-forming activity. When BamHI subclones of Towne XbaI fragment E were assayed individually for focus formation in NIH 3T3 and Rat-2 cells, transforming activity was localized within each terminal fragment (EJ and EM). Foci induced by EJ or EM DNA alone were smaller compared with those induced by Towne XbaI fragment E. Isolated focal lines exhibited growth in soft agar and were tumorigenic in immunocompetent syngeneic animals. High-molecular-weight DNAs from transformed and tumor-derived lines were analyzed by Southern blot hybridization with intact EM and a 1.5-kilobase subfragment lacking cell-related sequences. Virus-specific EM sequences were detected at less than one copy per cell in Towne XbaI fragment E-transformed NIH 3T3 cells and at multiple copies in rat tumor-derived cell lines. In contrast, virus-specific EJ sequences were barely detected in EJ-transformed and tumor-derived lines with intact EJ as probe.  相似文献   

3.
Primary cultures of baby rat kidney (BRK) cells were transformed by intact DNA and DNA fragments of weakly oncogenic human adenovirus types 3 and 7. The smallest fragment found to contain transforming activity was the left-terminal 4% endo R.HindIII fragment (for both adenovirus type 3 and 7 DNAs). The efficiency of transformation of this fragment was low, and no permanent cell line could be established. Left-terminal fragments ranging from 84 to 4,5% of the viral genome could all transform BRK cells with the same efficiency as intact viral DNA. A number of adenovirus type 7 DNA fragment-transformed lines were established and were found to contain persistent viral DNA sequences and adenovirus subgroup B-specific T antigen. Consequently, the transforming functions of adenovirus types 3 and 7 are located at the extreme left-hand end of the genome, and the minimum size for a DNA fragment with transforming activity is 1.0 X 10(6) daltons. These results do not rule out the possibility that viral genes located outside the transforming region may also influence transformation.  相似文献   

4.
The integration of DNA of highly oncogenic simian adenovirus type 7 (SA7) and non-oncogenic human adenovirus type 6 (Ad6) into the genome of newborn rat kidney cells transformed by fragmented DNA preparations was studied using reassociation kinetics and spot hybridization. Transforming DNA was fragmented with the specific endonuclease SalI (SA7) and BglII (Ad6). In contrast to the cell transformation by intact viral DNA, transformation by fragmented DNA resulted in integration into the cellular genome of not only the lefthand fragment with the oncogene but also of other regions of the viral genome. Additionally integrated fragments were stable and preserved during numerous passages of cells lines, although they were no expressed, at least in the case of the Ad6-transformed cell line. The integration of the fragments of SA7 DNA was accompanied by loss of 25-50% of the mass of each fragment. Adding the linear form of the pBR322 plasmid to the preparation of transforming Ad6 DNA also contributed to its cointegration into the genome of the transformed cell. This technique of cell cotransformation with any foreign DNAs together with the viral oncogens may be used as an equivalent of an integration vector for eukaryotic cells.  相似文献   

5.
Bacillus subtilis B7, a mutant which acquired gene amplification of the amyE-tmrB region, showed, as a result, hyperproductivity (about a 5- to 10-fold increase) of alpha-amylase and tunicamycin resistance. The mutational character was transferred to recipient cells by competence transformation. A 14-kilobase (kb) EcoRI chromosomal DNA fragment of strain B7 was found to have the transforming activity. We cloned a 6.4-kb EcoRI fragment on a phage vector lambda Charon 4A through a spontaneous deletion of 7.6 kb from the 14-kb fragment and subcloned a 1.6-kb HindIII fragment on pGR71. The cloned 6.4-kb EcoRI and 1.6-kb HindIII fragments retained the transforming activity of inducing gene amplification of the amyE-tmrB region. At the junction point (J) of the repeating units (16 kb), the tmrB gene was linked to a DNA region (M) located 4 kb upstream of amyE. The essential structure of the cloned, transforming (gene amplification-inducing) DNA was deduced to be that around J. The subcloned 1.6-kb HindIII fragment that retained the transforming activity was shown to be almost solely composed of the tmrB-J-M region. In addition, the DNA sequence around J was determined.  相似文献   

6.
The k1 and k2 linear DNA plasmids of Kluveromyces lactis replicate in the cytoplasm under the control of plasmid-encoded genes. These plasmids can also replicate autonomously in the cytoplasm of mitochondrial DNA-deficient strains of Saccharomyces cerevisiae. Essential for replication are plasmid-specific terminal inverted repeats (TIRs) to which a terminal protein (TP) is attached at the 5' ends. A plasmid was constructed with k2 TIRs in opposite orientations and with a selectable marker (URA3) under the control of k1UCS2 (upstream conserved sequence 2, the promoter of k1 open reading frame 2) in between the TIRs. Transformation of k1- and k2-containing S. cerevisiae with a fragment generated by releasing the TIR-flanked fragment from the plasmid by restriction digestion was very efficient, despite the absence of a TP. Transformation was also achieved with a fragment generated by PCR. Southern blotting demonstrated that transformants contained multiple copies of DNA fragments with the same size as the transforming DNA, supporting the hypothesis that these were replicating linear mini-chromosomes. The high frequency of transformation strongly suggests that these mini-chromosomes readily replicate supported by k2. Derivatives with a heterologous gene, firefly luciferase (LUC), expressed luciferase at high levels provided the gene was adjacent to a cytoplasmic plasmid promoter (k2UCS5).  相似文献   

7.
The transforming and oncogenous activity of uncleaved DNA of simian adenovirus SA7 (AdSA7) and the products of its restriction by endonucleases R. Bam HI and R. SalI was studied. It was shown that uncleaved virus DNA transformed the rat kidney cells and rat embryo fibroblasts and induced tumors in newborn hamsters. AdSA7 DNA, hydrolysed by R. Bam HI, posessed the transforming activity. The mixture of DNA fragments, obtained after hydrolysis by R. SalI was oncogenous in hamsters.  相似文献   

8.
9.
The origin of defective DNA (dDNA) of the Patton strain of herpes simplex virus type 1 (HSV-1) was physically mapped with BamHI in the parental DNA. The dDNA obtained from virus passaged at high multiplicities of infection was resistant to cleavage with HindIII, whereas digestion with EcoRI yielded a cluster of fragments 5.4 to 5.7 megadaltons (Mdal) in size. Cleavage with BamHI gave a cluster of fragments 2.6 to 3.2 Mdal in size, plus two homogeneous, comigrating 1-Mdal fragments. One of the latter fragments contained the single EcoRI site approximately 65 base pairs from one end. Hybridization of in vitro labeled dDNA probe to EcoRI, HindIII, BamHI, and Hpa I digests of nondefective HSV-1 DNA demonstrated that, in addition to the S-region terminal repeat, only one end of the S region was involved in the generation of this class of dDNA. Thus, the dDNA probe did not hybridize to either the S region 3.0-Mdal HindIIIN fragment or a 3.0-Mdal BamHI fragment of the adjacent 8.7-Mdal HindIIIG fragment, but did hybridize to four BamHI fragments of HindIII G (approximately 5.7 Mdal). The cluster of 2.6- to 3.2-Mdal fragments obtained with BamHI digestion of dDNA appears to represent a novel junction between the termination of dDNA adjacent to the 3.0-Mdal BamHI fragment in HindIII G and the 2.0- to 2.3-Mdal BamHI fragment terminal in HSV-1 DNA.  相似文献   

10.
The antigenic variant of simian adenovirus 7 (SA7) DNA was cleaved by restriction endonucleases EcoRI, XbaI, BamHI, SalI. The resulted digests of viral DNA were tested for transforming activity using the "calcium" technique. It was shown that BamHI. XbaI and SalI digests transformed primary baby rat kidney cells as well as native viral DNA. The transforming activity of separated BamHI and SalI fragments was tested also. The viral DNA fragments with transforming activity (BamHI-B and SalI-B) were localised on the left of the physical map of the viral genome. It was also shown that fragment-transformed cell lines were able to form colonies in 0.33% agarose medium.  相似文献   

11.
Rat spermatidal protein TP2 is rich in serine residues and has several potential sites for phosphorylation by different protein kinases. Recombinant TP2 is phosphorylated upon incubation in vitro with salt extract of testicular sonication resistant nuclei (SRN) (representing elongating and elongated spermatids). The major phosphorylation sites were localized to the C-terminal, V8 protease-derived, fragment (residues 87-114). Phosphorylation experiments with the wild type and different site-specific mutants of TP2 revealed that serine 109 and threonine 101 are the phosphorylation sites. Phosphorylation of the C-terminal fragment of TP2 was also demonstrated in vivo. Phosphorylation was not stimulated by either protein kinase C activators or cGMP but was inhibited by protein kinase A inhibitor (PKI) peptide, showing the involvement of protein kinase A in the phosphorylation of TP2. Phosphorylation of TP2 greatly reduced its DNA condensation property. TP2 when complexed with DNA was not a good substrate for phosphorylation by PKA. Dephosphorylation of the DNA-TP2 complex by calf intestinal alkaline phosphatase restored the DNA condensation property to a level equivalent to that observed with TP2. The physiological significance of the phosphorylation-dephosphorylation cycle is discussed with reference to the two-domain model of TP2.  相似文献   

12.
13.
The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Peptide E7(2-32) did not block pRB60 binding to DNA, while peptide E7(20-57) and an E7 fragment containing residues 1 to 60 partially blocked DNA binding. E7 species containing residues 3 to 75 were fully effective at blocking pRB60 binding to DNA. These studies indicate that E7 protein specifically blocks pRB60 binding to DNA and suggest that the E7 region responsible for this property lies between residues 32 and 75. The functional significance of these observations is unclear. However, we have found that a point mutation in pRB60 that impairs DNA-binding activity also blocks the ability of pRB60 to inhibit cell growth. This correlation suggests that the DNA-binding activity of retinoblastoma proteins contributes to their biological properties.  相似文献   

14.
R A Feldman  D R Lowy  W C Vass    T J Velu 《Journal of virology》1989,63(12):5469-5474
We have constructed an efficient new retroviral vector containing strong promoting elements derived from the Friend murine leukemia virus (F-MuLV) long terminal repeat (LTR) and have used the vector to demonstrate that overexpression of human c-fps/fes can transform established mouse cells. When a c-fps/fes cDNA was cloned into the vector, this viral DNA and the recovered virus induced very high levels of the c-fps/fes product NCP92 and tumorigenic transformation of NIH 3T3 cells. Compared with an isogenic vector under control of a Moloney MuLV-derived LTR, the vector driven by the F-MuLV LTR induced 3- to 10-times-higher levels of expression of c-fps/fes, a higher level of phosphotyrosine in cellular proteins, and a virus whose transforming activity was 2 orders of magnitude greater. We conclude (i) that normal c-fps/fes can induce morphologic transformation and that its transforming activity is a function of the level of expression of NCP92 and (ii) that the vector based on the F-MuLV LTR is more efficient than the vector driven by a Moloney MuLV LTR in inducing high levels of expression and measurable biological activity.  相似文献   

15.
Cleavage of DNA from Haemophilus influenzae with restriction endonucleases caused inactivation of transforming ability to an extent that depended on the genetic marker and the enzyme. The rate of inactivation, but not the final level of survival, depended on the concentration of enzyme in the restriction digest. In general, the greatest extent of inactivation of transforming activity was obtained with endonucleases that are known to produce the shortest fragments. We electrophoresed restriction digests of H. influenzae DNA in agarose gels and assayed transforming activity of DNA extracted from gel slices. In this way, we determined the lengths of restriction fragments that contain genetic markers of H. influenzae. For the marker that we studied most thoroughly (nov), the shortest restriction fragment that possessed detectable transforming activity was a 0.9-kilobase pair fragment produced by endonuclease R . PstI. The shortest marker-bearing restriction fragment that retained substantial transforming activity (50% of value for undigested DNA) was a 2.1-kilobase pair EcoRI fragment bearing the kan marker. Among marker-bearing restriction fragments 1 to 4 kilobase pairs in length, survival of transforming activity varied 10,000-fold. We relate these observations to the recent findings by Sisco and Smith (Proc. Natl. Acad. Sci. U.S.A. 76:972-976, 1979) that efficient entry of DNA into competent H. influenzae cells appears to require the presence of a recognition sequence that is scattered throughout the Haemophilus genome in many more copies than in unrelated genomes.  相似文献   

16.
17.
The ss-DNA of the (+) and (-) chains of Ela DNA fragment was obtained by hydrolysis of the recombinant bacteriophages M13 mp8G and mp9G (where G is 1-1750 bp:, E1a region of oncogene SA7) in complexes with the 16 bp oligonucleotides containing AluI and BspRI sites of restriction and sequences complementary to E1a SA7. The obtained fragments overlap the E1a zones associated with the immortalizing potential of SA7.  相似文献   

18.
Trypanosoma cruzi trypomastigotes acquire sialic acid (SA) from host glycoconjugates by means of a plasma membrane-associated trans-sialidase (TS). Here we study the substrate specificity of TS, which differs from all known sialyltransferases in that it does not require cytidine monophosphate (CMP)-SA as donor. The T. cruzi TS reversibly transfers SA to saccharides with terminal beta-Gal (but not alpha-Gal) residues. Donors are saccharides with SA linked to terminal beta-Gal residues by (alpha 2-3), but not (alpha 2-6) bonds. The type of beta-linkage of the terminal Gal residue is of minor importance (beta 1-4 and beta 1-6 are slightly better than beta 1-3), whereas chain length and the structure of additional vicinal sugar residues are not relevant. SA on the surface of living trypomastigotes of T. cruzi is transferred back and forth between the parasite surface and acceptor molecules with terminal beta-Gal, either in solution or on the surface of neighbouring mammalian cells. Addition of fucose residue on or close to the terminal galactose impairs TS activity. As a consequence, the enzyme acts poorly on the E-selectin ligand sialyl-Lewisx and its precursor Lewisx, and in vitro adhesion of TS-treated neutrophils to L-cells expressing L-selectin is not affected. Modifications in the structure of the (alpha 2-3)-linked N-acetyl-neuraminic acid (Neu5Ac) (deoxy or methoxy) of the donor molecules do not impair transfer if the changes are at C9, whereas changes at C4, C7 and C8 impair the ability to donate the modified SA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The adenovirus terminal protein (TP) is covalently linked to the 5' ends of the adenovirus genome and enhances DNA replication in vitro by increasing template activity. To study the effect of TP in more detail we isolated short origin fragments containing functional TP using anion exchange chromatography. These fragments were highly active as templates for DNA replication in a reconstituted system. Employing band-shift assays we found that the affinity of the precursor terminal protein-DNA polymerase complex for the TP-containing origin was increased 2 to 3-fold. Binding affinities of two other replication stimulating proteins, NFI and Oct-1, were not influenced by the terminal protein. Upon DNaseI footprinting we observed, unexpectedly, that the breakdown pattern had changed at various positions in the origin, notably in the area 3-6 and 41-51 by the presence of TP. Some differences in the footprint pattern of NFI and Oct-1 were also found. Our results indicate that TP induces subtle changes in the origin structure that influence the interaction of other replication proteins.  相似文献   

20.
The transforming activity of cloned Moloney sarcoma virus (MSV) proviral DNA was inhibited by in vitro methylation of the DNA at cytosine residues, using HpaII and HhaI methylases before transfection into NIH 3T3 cells. The inhibition of transforming activity due to HpaII methylation was reversed by treatment of the transfected cells with 5-azacytidine, a specific inhibitor of methylation. Analysis of the genomic DNA from the transformed cells which resulted from the transfection of methylated MSV DNA revealed that the integrated MSV proviral DNA was sensitive to HpaII digestion in all cell lines examined, suggesting that loss of methyl groups was necessary for transformation. When cells were infected with Moloney murine leukemia virus at various times after transfection with methylated MSV DNA, the amount of transforming virus produced indicated that the loss of methyl groups occurred within 24 h. Methylation of MSV DNA at HhaI sites was as inhibitory to transforming activity as methylation at HpaII sites. In addition, methylation at both HpaII and HhaI sites did not further reduce the transforming activity of the DNA. These results suggested that; whereas methylation of specific sites on the provirus may not be essential for inhibiting the transforming activity of MSV DNA, methylation of specific regions may be necessary. Thus, by cotransfection of plasmids containing only specific regions of the MSV provirus, it was determined that methylation of the v-mos gene was more inhibitory to transformation than methylation of the viral long terminal repeat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号