首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inhibitory activities of c-Ha-ras gene products (p21s) toward several cysteine proteinases have been investigated. The activity of cathepsin L was inhibited by p21s most effectively while those of cathepsin B and papain were slightly inhibited by p21s. p21s did not show any inhibitory activity toward cathepsin H. In order to connect the protease-inhibitor activity of p21s with cell growth, the degradation of epidermal growth factor receptors (EGF-receptors) was investigated. EGF-receptors were preferentially cleaved by cathepsin L but not by cathepsin B or H. The cleavage of EGF-receptors by cathepsin L was inhibited by p21s dose-dependently. These results raise the possibility that p21s can suppress the degradation of growth-related proteins such as EGF-receptors and thereby affect cell growth.  相似文献   

2.
We have investigated the proteinase-inhibitory activity against cathepsin L of some c-Ha-ras gene products (p21s) with point mutations at position 12, 33 or 35, which affect the interaction with GTPase-activating protein (GAP). All of the full-length p21s examined showed similar inhibitory activities irrespective of the point mutation and the transforming activity. These results suggest that mutations at GAP-interacting sites have no effect on the proteinase-inhibitory activity of p21s and that the proteinase-inhibitory activity alone is not sufficient for the transformation caused by p21s.  相似文献   

3.
Mechanism-based inactivation of caspases by the apoptotic suppressor p35.   总被引:4,自引:0,他引:4  
Caspases play a crucial role in the ability of animal cells to kill themselves by apoptosis. Caspase activity is regulated in vivo by members of three distinct protease inhibitor families, one of which--p35--has so far only been found in baculoviruses. P35 has previously been shown to rapidly form essentially irreversible complexes with its target caspases in a process that is accompanied by peptide bond cleavage. To determine the protease-inhibitory pathway utilized by this very selective protease inhibitor, we have analyzed the thermodynamic and kinetic stability of the protein. We show that the conformation of p35 is stabilized following cleavage within its reactive site loop. An inactive catalytic mutant of caspase 3 is bound by p35, but much less avidly than the wild-type enzyme, indicating that the protease catalytic nucleophile is required for stable complex formation. The inhibited protease is trapped as a covalent adduct, most likely with its catalytic Cys esterified to the carbonyl carbon of the scissile peptide bond. Together these data reveal that p35 is a mechanism-based inactivator that has adopted an inhibitory device reminiscent of the widely distributed serpin family, despite a complete lack of sequence or structural homology.  相似文献   

4.
A series of 1,3,4-thiadiazole derivatives containing 1,4-benzodioxan (2a-2s) have been synthesized to screen for FAK inhibitory activity. Compound 2p showed the most potent biological activity against HEPG2 cancer cell line (EC(50)=10.28 μg/mL for HEPG2 and EC(50)=10.79 μM for FAK), which was comparable to the positive control. Docking simulation was performed to position compound 2p into the FAK structure active site to determine the probable binding model. The results of antiproliferative and Western-blot assay demonstrated that compound 2p possessed good antiproliferative activity against HEPG2 cancer cell line. Therefore, compound 2p with potent FAK inhibitory activity may be a potential anticancer agent against HEPG2 cancer cell.  相似文献   

5.
The SET protein and the cell cycle inhibitor p21(Cip1) interact in vivo and in vitro. We identified here the domain (157)LIF(159) of p21(Cip1) as essential for the binding of SET. We also found that SET contains at least two domains of interaction with p21(Cip1), one located in the fragment amino acids 81-180 and the other one in the fragment including amino acids 181-277. SET and p21(Cip1) co-localize in the cell nucleus in a temporal manner. Overexpression of SET blocks the cell cycle at the G(2)/M transition in COS and HCT116 cells. Moreover, SET inhibits cyclin B-CDK1 activity both in vivo and in vitro in both cell types. This effect is specific for these complexes since SET did not inhibit either cyclin A-CDK2 or cyclin E-CDK2 complexes. SET and p21(Cip1) cooperate in the inhibition of cyclin B-CDK1 activity. The inhibitory effect of SET resides in its acidic C terminus, as demonstrated by the ability of this domain to inhibit cyclin B-CDK1 activity and by the lack of blocking G(2)/M transition when a mutated form of SET lacking this C terminus domain was overexpressed in COS cells. These results indicate that SET might regulate G(2)/M transition by modulating cyclin B-CDK1 activity.  相似文献   

6.
rac1 and rac2 p21s are ras p21-like small GTP-binding proteins which are implicated in the NADPH oxidase-catalyzed superoxide generation in phagocytes. rac1 and rac2 p21s have a Cys-A-A-Leu (A = aliphatic amino acid) structure in their C-terminal region which may undergo post-translational processing including prenylation, proteolysis, and carboxyl methylation. We studied the function of this post-translational processing of rac p21s in their interaction with the stimulatory and inhibitory GDP/GTP exchange proteins for rac p21s, named smg GDS and rho GDI, and in their NADPH oxidase activation. We produced human recombinant rac1 and rac2 p21s in insect cells and purified them from the membrane and soluble fractions as the post-translationally processed and unprocessed forms, respectively. Post-translationally processed rac1 and rac2 p21s were sensitive to both smg GDS and rho GDI, but post-translationally unprocessed rac1 and rac2 p21s were insensitive to them. The GTP gamma S (guanosine 5'-(3-O-thio)triphosphate)-bound form of post-translationally processed rac1 and rac2 p21s stimulated the NADPH oxidase activity, but post-translationally unprocessed rac1 and rac2 p21s were far less effective. These results indicate that both rac1 and rac2 p21s stimulate the NADPH oxidase activity and that their post-translational processing is important not only for their interaction with smg GDS and rho GDI but also for their NADPH oxidase activation.  相似文献   

7.
The postmicrosomal fraction of the extract from NIH 3T3 and BALB/c 3T3 cells stimulated the hydrolysis of GTP bound to H-ras gene product p21 by severalfold. The stimulation was observed with normal p21 but not with p21 with valine as the 12th residue. This specificity is similar to that of GTPase-activating protein (GAP) for N-ras p21 described by M. Trahey and F. McCormick (Science 238:542-545, 1987). Consistent with this specificity, analysis of p21-bound nucleotides in living cells revealed that almost all normal p21 bound GDP, whereas oncogenic mutant p21s bound both GTP and GDP. Similar activity was also found in various mouse tissues, with brain tissue showing the highest specific activity. When cell extracts were prepared from cultured cells, there was a linear relationship between GAP activity and cell density. These results suggest the factor is involved in the regulation of cell proliferation.  相似文献   

8.
The cloning of the negative growth regulatory gene, p21Sdi1, has led to the convergence of the fields of cellular senescence, cell cycle regulation and tumor suppression. This gene was first cloned as an inhibitor of DNA synthesis that was overexpressed in terminally non-dividing senescent human fibroblasts (SD11) and later as a p53 transactivated gene (WAF1) and a Cdk-interacting protein (CIP1, p21) that inhibited cyclin-dependent kinase activity. To identify the active region(s) of p21Sdi1, cDNA constructs encoding various deleted forms of the protein were analyzed. Amino acids 22-71 were found to be the minimal region required for DNA synthesis inhibition. Amino acids 49-71 were involved in binding to Cdk2, and constructs deleted in this region expressed proteins that were unable to inhibit Cdk2 kinase activity in vitro. The latter stretch of amino acids shared sequence similarity with amino acids 60-76 of the p27Kip1 protein, another Cdk inhibitor. Point mutations made in p21Sdi1 in this region confirmed that amino acids common to both proteins were involved in DNA synthesis inhibition. Additionally, a chimeric protein, in which amino acids 49-65 of p21Sdi1 were substituted with amino acids 60-76 of p27Kip1, had almost the same DNA synthesis inhibitory activity as the wild-type protein. The results indicate that the region of sequence similarity between p21Sdi1 and p27Kip1 encodes an inhibitory motif characteristic of this family of Cdk inhibitors.  相似文献   

9.
Recent data has indicated that exogenous nitric oxide (NO) has the ability to decrease endogenous NO production by inhibiting the enzyme responsible for its generation, NO synthase (NOS). Our previous studies have indicated that increased generation of reactive oxygen species (ROS) play an important role in the inhibitory event. However, the mechanisms for these effects remain unclear. Previous studies have suggested that NO can activate p21ras. Thus, the objective of this study was to determine whether NO-mediated activation of p21ras is involved in the inhibitory process, and to further elucidate the involvement of ROS. Using primary cultures of ovine pulmonary arterial endothelial cells we demonstrated that the NO donor SpermineNONOate, increased p21ras activity by 2.3-fold compared to untreated cells, and that the farnesyl-transferase inhibitor, alpha-hydroxyfarnesylphosphonic acid, reduced p21ras activity and significantly reduced inhibition of eNOS. The overexpression of p21ras increased, while the overexpression of an NO unresponsive mutant of p21ras (p21ras C118S) reduced, the inhibition of eNOS by NO. Further, we identified an increase in the level of superoxide and peroxynitrite in endothelial cells exposed to NO that was reduced by p21ras C118S transient transfection. Conversely, levels of superoxide and peroxynitrite could be increased by the over expression of wild type p21ras. Similarly, eNOS nitration induced by NO exposure was reduced by p21ras C118S transient transfection, and increased by the overexpression of wild-type p21ras. Finally, results also demonstrated that eNOS itself was a significant producer of superoxide, and that this appeared to be related to a p21ras-dependent increase in phosphorylation of Ser1177. Our results implicate a signaling pathway involving p21ras activation, superoxide generation, and peroxynitrite formation as being important in the NO-mediated inhibition of eNOS.  相似文献   

10.
Cell cycle is an integral part of cell proliferation, and consists mainly of four phases, G1, S, G2 and M. The p21 protein, a cyclin dependent kinase inhibitor, plays a key role in regulating cell cyclevia G1 phase control. Cells capable of epimorphic regeneration have G2/M accumulation as their distinctive feature, whilst the majority of somatic cells rest at G1 phase. To investigate the role played byp21 in antler regeneration, we studied the cell cycle distribution of antler stem cells (ASCs), via down-regulation of p21 in vitro using RNAi. The results showed that ASCs had high levels of p21 mRNA expression and rested at G1 phase, which was comparable to the control somatic cells. Down-regulation of p21 did not result in ASC cell cycle re-distribution toward G2/M accumulation, but DNA damage and apoptosis of the ASCs significantly increased and the process of cell aging was slowed. These findings suggest that the ASCs may have evolved to use an alternative, p21-independent cell cycle regulation mechanism. Also a unique p21-dependent inhibitory effect may control DNA damage as a protective mechanism to ensure the fast proliferating ASCs do not become dysplastic/cancerous. Understanding of the mechanism underlying the role played by p21 in the ASCs could give insight into a mammalian system where epimorphic regeneration is initiated whilst the genome stability is effectively maintained.  相似文献   

11.
Mycinamicin is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against gram-positive bacteria. Recently, the nucleotide sequences of the mycinamicn biosynthetic gene cluster in M. griseorubida have been completely determined. Mycinamicin non-producer M7A21 was isolated by mycAV inactivation, which encodes the module 7 of mycinamicin polyketide synthase (PKS) required for the biosynthesis of the mycinamicin biosynthetic intermediate protomycinolide-IV (PML-IV). When the bioconversion to mycinamicin II (M-II) from PML-IV was performed using M7A21 and the feeding culture method, the productivity of M-II was the same as that of M-II in wild-type strain A11725. p446M7 containing mycAV was constructed using the Escherichia coli-Streptomyces shuttle vector pGM446. The mycinamicin productivity of M7A21 was restored by the introduction of p446M7 into the M7A21 cell, but almost all p446M7 was integrated into the chromosome of M7A21 because the plasmid was unstable in M7A21. The feeding culture and the introduction of the complement gene for M7A21 would be powerful tools to perform combinatorial biosynthesis for the production of new macrolide antibiotics.  相似文献   

12.
The superoxide-generating NADPH oxidase system in phagocytes consists of at least membrane-associated cytochrome b558 and three cytosolic components named SOCI/NCF-3/sigma 1/C1, SOCII/NCF-1/p47-phox, and SO-CIII/NCF-2/p67-phox. p47-phox and p67-phox were isolated, and their primary structures were determined, but SOCI has not been well characterized. In the present study, we first purified SOCI to homogeneity from the cytosol fraction of the differentiated HL-60 cells. The purified SOCI was a small GTP-binding protein (G protein) with a M(r) of about 22,000. The guanosine 5'-(3-O-thio)triphosphate-bound form, but not the GDP-bound form, of this small G protein showed the SOCI activity. The partial amino acid sequence of SOCI thus far determined was identical to the amino acid sequence deduced from the cDNA encoding rac2 p21. None of the purified small G proteins, including Ki-ras p21, smg p21B/rap1B p21, rhoA p21, and rac1 p21, showed the SOCI activity. These results indicate that SOCI is a small G protein very similar, if not identical, to rac2 p21. The GDP/GTP exchange reaction of SOCI was stimulated and inhibited by stimulatory and inhibitory GDP/GTP exchange proteins for small G proteins, named smg GDS and rho GDI, respectively. The NADPH oxidase activity was also stimulated and inhibited by smg GDS and rho GDI, respectively. These results indicate that the superoxide-generating NADPH oxidase system is regulated by both smg GDS and rho GDI through rac2 p21 or the rac2-related small G protein in phagocytes.  相似文献   

13.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

14.
Abnormal immune regulation is a key feature of the complex pathogenic mechanism of ulcerative colitis (UC). In particular, macrophages and group 2 innate lymphoid cells (ILC2s) are important components of natural immunity that have been shown to play important roles in the pathogenesis of UC, as well as decreased E-cadherin expression on the colonic mucosa. However, it remains unclear how these components interact with each other. In this study, we investigated the molecular mechanisms of UC mediated by macrophage-derived exosomes. We showed for the first time that miR-21a-5p expression is increased in the peritoneal exosomes of mice with dextran sulphate sodium induced enteritis and that miR-21a-5p expression correlates negatively with E-cadherin expression in enterocytes. Moreover, we confirmed that miR-21a-5p was mainly derived from M1 macrophages and demonstrated that KLRG1, a surface inhibitory receptor on ILC2s, participated in excessive ILC2 activation in UC by promoting GATA-3. In conclusion, our results suggest molecular targets and provide a theoretical basis for elucidating the pathogenesis of UC and improving its treatment.  相似文献   

15.
The GDP/GTP exchange reaction of rho p21, a member of ras p21-related small GTP-binding protein superfamily, is regulated by two stimulatory GDP/GTP exchange proteins (GEPs), named smg GDS and rho GDS, and by one inhibitory GEP, named rho GDI. In bovine aortic smooth muscle, rho GDS and rho GDI were major GEPs for rho p21, and the rho GDI activity on the GDP/GTP exchange reaction of rho p21 was stronger than the rho GDS activity in their simultaneous presence. Moreover, in the crude cytosol, the GDP-bound form of rho p21 was complexed with rho GDI but not with rho GDS. These results, together with our recent finding that rho p21 is involved in the vasoconstrictor-induced Ca2+ sensitization of smooth muscle contraction, suggest that there is some mechanism to release the inhibitory action of rho GDI and to make rho p21 sensitive to the stimulatory action of rho GDS, eventually leading to the rho p21 activation, in the signaling pathways of the vasoconstrictor receptors in smooth muscle.  相似文献   

16.
We have recently purified to near homogeneity the stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like GTP-binding proteins) from bovine brain cytosol. This regulatory protein, named GDP dissociation stimulator (GDS), stimulates the GDP/GTP exchange reaction of smg p21s by stimulating the dissociation of GDP from and the subsequent binding of GTP to them. In this study, we have isolated and sequenced the cDNA of smg p21 GDS from a bovine brain cDNA library by using an oligonucleotide probe designed from the partial amino acid sequence of the purified smg p21 GDS. The cDNA has an open reading frame encoding a protein of 558 amino acids with a calculated Mr value of 61,066, similar to the Mr of 53,000 estimated for the purified smg p21 GDS by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sucrose density gradient ultracentrifugation. The isolated cDNA is expressed in Escherichia coli, and the encoded protein exhibits smg p21 GDS activity. smg p21 GDS is overall hydrophilic, but there are several short hydrophobic regions. The smg p21 GDS mRNA is present in bovine brain and various rat tissues. smg p21 GDS has low amino acid sequence homology with the yeast CDC25 and SCD25 proteins, which may regulate the GDP/GTP exchange reaction of the yeast RAS2 protein, but not with ras p21 GTPase-activating protein, the inhibitory GDP/GTP exchange proteins (GDP dissociation inhibitor) for smg p25A and rho p21s, and the beta gamma subunits of heterotrimeric GTP-binding proteins such as Gs and Gi.  相似文献   

17.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

18.
Entry of many viral and bacterial pathogens into host cells depends on cholesterol and/or cholesterol-enriched domains (lipid rafts) in the cell membrane. Earlier, we showed that influenza virus A matrix protein M1 contains amphipathic α-helices with exposed cholesterol-recognizing amino acid consensus (CRAC) motifs. In order to test possible functional activity of these motifs, we studied the effects of three synthetic peptides corresponding to the CRAC-containing α-helices of the viral M1 protein on the phagocytic activity of cultured mouse IC-21 macrophages. The following peptides were used: LEVLMEWLKTR (M1 α-helix 3, a.a. 39–49; further referred to as peptide 1), NNMDKAVKLYRKLK (M1 α-helix 6, a.a. 91–105; peptide 2), and GLKNDLLENLQAYQKR (M1 α-helix 13, a.a. 228–243; peptide 3). We found that all three peptides modulated interactions of IC-21 macrophages with non-opsonized 2-μm target particles. The greatest effect was demonstrated by peptide 2: in the presence of 35 μM peptide 2, the phagocytic index of IC-21 macrophages exceeded the control value by 60%; 10–11 mM methyl-β-cyclodextrin abolished this effect. Peptides 1 and 3 exerted weak inhibitory effect in a narrow concentration range of 5–10 μM. The dose-response curves could be approximated by a sum of two (stimulatory and inhibitory) components with different Hill coefficients, suggesting existence of at least two peptide-binding sites with different affinities on the cell surface. CD spectroscopy confirmed that the peptides exhibit structural flexibility in solutions. Altogether, our data indicate that amphipathic CRAC-containing peptides derived from the viral M1 protein modulate lipid raft-dependent processes in IC-21 macrophages.  相似文献   

19.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

20.
Activation of protein kinase C (PKC) inhibits cell cycle progression at the G1/S and G2/M transitions. We found that phorbol 12-myristate 13-acetate (PMA) induced upregulation of p21, not only in MCF-7 cells arrested in the G1 phase as previously shown, but also in cells delayed in the G2 phase. This increase in p21 in cells accumulated in the G1 and G2/M phases of the cell cycle after PMA treatment was inhibited by the PKC inhibitor GF109203X. This indicates that PKC activity is required for PMA-induced p21 upregulation and cell cycle arrest in the G1 and G2/M phases of the cell cycle. To further assess the role of p21 in the PKC-induced G2/M cell cycle arrest independently of its G1 arrest, we used aphidicolin-synchronised MCF-7 cells. Our results show that, in parallel with the inhibition of cdc2 activity, PMA addition enhanced the associations between p21 and either cyclin B or cdc2. Furthermore, we found that after PMA treatment p21 was able to associate with the active Tyr-15 dephosphorylated form of cdc2, but this complex was devoid of kinase activity indicating that p21 may play a role in inhibition of cdc2 induced by PMA. Taken together, these observations provide evidence that p21 is involved in integrating the PKC signaling pathway to the cell cycle machinery at the G2/M cell cycle checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号