首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite evidence that interleukin (IL)-1 promotes the proliferation of some T helper 2 (Th2) cell clones in vitro, the physiological role of IL-1 in the regulation of antigen-specific immune responses remains undefined. Using a liposome-DNA delivery system, we transiently expressed IL-1 receptor antagonist (IL-1Ra) to suppress IL-1 functions at the site of the antigen-specific primary immune response. Our data indicate, for the first time, that IL-1Ra downregulates antigen-specific IL-4 and IgE responses, with concomitant enhancement of interferon- and IgG2a responses in vivo. In addition, IL-1 can promote Th2 development in an IL-4-independent manner in vitro. Thus, the balance between endogenous IL-1 and IL-1Ra during the primary immune response can be an important factor in determining the antigen-specific effector function of T cells.  相似文献   

2.
3.
Bronchial asthma and allergic diseases are orchestrated by T-cells producing T-helper type 2 (Th2) cytokines, such as interleukin-4 (IL-4) and IL-5, and are inhibited by Th1 responses. Helicobacter pylori has chronically infected the human population for c . 100 000 years and preferentially elicits a Th1 mucosal immune response with the production of interferon-γ and IL-12. Among several bacterial factors, the neutrophil-activating protein of H. pylori (HP-NAP) not only plays a key role in driving Th1 inflammation but it is also able to inhibit Th2 responses in vitro and in vivo in allergic bronchial asthma, in humans and mice. Both systemic and mucosal administrations of HP-NAP are successful in reducing eosinophilia, immunoglobulin E and systemic Th2 cytokines at the bronchial level. Thus, these results identify HP-NAP as a candidate for novel strategies for the prevention and treatment of allergic diseases.  相似文献   

4.
Roles of cytokines in the pathogenesis and therapy of type 1 diabetes   总被引:2,自引:0,他引:2  
Type 1 diabetes (T1D) results from autoimmune destruction of the insulin-producing β-cells in the pancreatic islets of Langerhans by autoreactive T helper 1 (Th1) cells characterized by their cytokine secretory products, interleukin-2 (IL-2) and interferon γ (IFNγ). Th1-type cytokines (IL-2 and IFNγ) correlate with T1D, whereas Th2 (IL-4 and IL-10), Th3 (transforming growth factor beta [TGFβ]), and T regulatory cell-type cytokines (IL-10 and TGFβ) correlate with protection from T1D. Paradoxically, however, administrations of Th1-type cytokines (IL-2 and IFNγ) and immunotherapies that induce Th1-type cytokine responses actually prevent T1D, at least in animal models. Therefore, immunotherapies that inhibit IL-2 production/action will block Th1 cell/cytokine-driven effector mechanisms of pancreatic islet β-cell destruction; however, anti-IL-2 therapy will not allow immune tolerance to be established. In contrast, immunotherapies that increase IL-2 production/action may correct an immunodeficiency in IL-2 production that appears to underlie the autoimmunity of T1D, thereby restoring immune tolerance to islet β-cells and prevention of T1D.  相似文献   

5.
Inflammation and granuloma formation in human neurocysticercosis has been attributed to Th1-type immune responses of the host. In the present murine model, over 94% of Taenia solium metacestodes were viable and elicited no granulomatous inflammation, whereas parasites killed by praziquantel treatment elicited rapid granuloma formation that calcified within 2weeks. Osteopontin (OPN) is a Th1-related cytokine that is up-stream of IL-12 and which may play an essential role in granuloma formation and calcification. OPN mRNA expression was down-regulated in tissues surrounding viable cysticerci, but was up-regulated in inflammatory tissues surrounding degenerating cysticerci. Moreover, co-culture with a viable cysticercus or ES products from these metacestodes led to a decrease in OPN, IFN-gamma and IL-12 expression, whereas co-culture with somatic proteins enhanced OPN expression by leukocytes. Addition of recombinant mouse OPN (rmOPN) counteracted the down-regulation of IL-12 and IFN-gamma mRNA expression, but not OPN mRNA expression, in leukocyte cultures. Furthermore, injection of rmOPN into the tissues surrounding implanted cysticerci enhanced inflammatory responses while a similar injection of an anti-rmOPN antibody reduced inflammation. These findings suggest that the suppression of host Th1-type granulomatous inflammation by ES products from T. solium metacestodes is related to down-regulation of OPN gene expression.  相似文献   

6.
Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4+-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.  相似文献   

7.
There is growing evidence that diesel exhaust particles (DEP) can induce allergic diseases with increased IgE production and preferential activation of Th2 cells. To clarify the cellular basis of the role of DEP in the induction of Th2-dominant responses, we examined the effects of DEP on the cytokine production by T cells stimulated with anti-CD3/CD28 Ab and on that by monocyte-derived dendritic cells (MoDCs) stimulated with CD40L and/or IFN-gamma. We examined IFN-gamma, IL-4, IL-5, IL-8, and IL-10 produced by T cells and TNF-alpha, IL-1beta, IL-10, and IL-12 produced by MoDCs using real-time PCR analysis or by ELISA. To highlight the effects of DEP, we compared the effects of DEP with those of dexamethasone (DEX) and cyclosporin A (CyA). DEP significantly suppressed IFN-gamma mRNA expression and protein production, while it did not affect IL-4 or IL-5 mRNA expression or protein production. The suppressive effect on IFN-gamma mRNA expression was more potent than that of DEX and comparable at 30 mug/ml with 10(-7) M CyA. The suppressive effect on IFN-gamma production was also more potent than that of either DEX or CyA. DEP suppressed IL-12p40 and IL-12p35 mRNA expression and IL-12p40 and IL-12p70 production by MoDCs, while it augmented IL-1beta mRNA expression. Finally, by using a thiol antioxidant, N-acetyl cysteine, we found that the suppression of IFN-gamma production by DEP-treated T cells was mediated by oxidative stress. These data revealed a unique characteristic of DEP, namely that they induce a Th2 cytokine milieu in both T cells and dendritic cells.  相似文献   

8.
9.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   

10.
Abstract CD-1 mice intravenously infected with the virulent Brucella abortus 2308 strain simultaneously produce significant levels of gamma interferon (IFN-γ) and interleukin-10 (IL-10) in their spleens between the second and eighth day post-infection with no production of interleukin-4 (IL-4). Endogenous synthesis of IL-10 does not affect the production of IFN-γ in this organ, while the production of both cytokines during this period of time is accompanied by a statistically significant increase ( P < 0.001) in the number of colony forming units (cfu) of B. abortus 2308 present in the organ. These findings suggest that although the endogenous synthesis of IL-10 apparently does not affect IFN-γ production, it may affect the effector functions of macrophages to control intracellular brucellae. Production of the Th1 cytokine IFN-γ during B. abortus 2308 infection is also associated with a specific IgG3 and IgG2a response against the B. abortus 2308 lipopolysaccharide (S-LPS) antigen.  相似文献   

11.
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22.  相似文献   

12.
Type 2 immunity is characterized by expression of the cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13, which can function in mediating protective immunity in the host or possess a pathogenic role. T helper (Th) 2 cells have emerged to play a beneficial role in mediating anti-parasitic immunity and are also known to be key players in mediating allergic diseases. In addition to the Th2 cells, recent studies have identified T follicular helper (Tfh) cells as an alternative source of IL-4 to regulate type 2 humoral immune responses, indicating that Th2 and Tfh cells exhibit overlapping phenotypical and functional characteristics. Th2 and Tfh cells appear to utilize distinct mechanisms for regulation of IL-4 expression; however unlike Th2 cells, the regulation and function of Tfh-derived IL-4 is not yet fully understood. Understanding of the molecular mechanisms for IL-4 expression and function in both cell subsets will be beneficial for the development of future therapeutic interventions.  相似文献   

13.
Substance P (SP), a neuropeptide, interacts with the neurokinin 1 receptor (NK-1R) on immune cells to help control IFN-gamma production. In murine schistosomiasis mansoni, schistosome worms produce ova that incite focal Th2-type granulomatous inflammation within the liver and intestines. Normal gut is characterized by a controlled state of inflammation. IL-10 knockout mice develop chronic Th1-type colitis spontaneously. Both schistosome granulomas and gut mucosa display an SP immune regulatory circuit. However, the origin and regulation of SP production at these sites of inflammation are poorly understood. Macrophages are a potential source of SP. We therefore studied macrophages (F4/80(+)) from these models of inflammation. SP mRNA (preprotachykinin A (PPT A)) was detected within the schistosome granuloma, spleen, and lamina propria macrophages. Compared with those from wild-type mice, granuloma macrophages from STAT6(-/-) mice had 10-fold higher PPT A mRNA expression, whereas in STAT4(-/-) animals, PPT A mRNA expression was nearly abolished. IL-12 signals via STAT4 to induce Th1-type inflammation. It was demonstrated that IL-12, but not IL-18, induces SP mRNA expression in resting splenic macrophages from Schistosoma-infected mice and in wild-type lamina propria mononuclear cells. Thus, macrophages are a source for SP at these sites of chronic inflammation, and IL-12 and STAT4 are regulators of macrophage SP mRNA expression.  相似文献   

14.
15.
Cryptococcosis is an opportunistic fungal infectious disease that often occurs in severely immunocompromised patients. Host defence against the causative microorganism is largely mediated by cellular immunity, and Th1 cytokines, such as IFN-gamma, play central roles in the host protective responses. IL-12 and IL-18 activate the synthesis of IFN-gamma by innate immune cells, including NK, NKT and gamma delta T cells and promote the differentiation of Th1-type acquired immune responses. Recently, NKT cells, which are involved in the recognition of glycolipid antigens, have attracted much attention based on their potent immunomodulating activities. Several studies have reported the role of this particular component of innate immune responses in tumor immunity and pathogenesis of autoimmune diseases. In this review, I outline the recent findings on the role of NKT cells in host defence against infectious microorganisms, with a special focus on our data emphasizing the importance of this subset of immunocytes in the development of acquired as well as early host protection against cryptococcal infection.  相似文献   

16.
Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte(CTL) responses, Toll-like receptor(TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3 K, ERK, and m TOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates m TOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, m TOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, m TOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of m TOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which m TOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy.  相似文献   

17.
An in vitro immunization (IVI) protocol enables antigen specific antibody production from L-Leucyl-L-Leucine methyl ester (LLME)-treated human peripheral blood lymphocytes (PBL) upon antigen stimulation in the presence of IL-2, IL-4, and muramyl dipeptide. In the course of our studies, we have found that IL-10 added at the antigen sensitization significantly augmented antibody production level from the LLME-treated PBL. In the present study, we tried to demonstrate the role of IL-10 in the augmentation of antibody production in an IVI protocol by clarifying the cytokine expression profiles in CD4(+) and CD8(+) T cells. The results showed that IL-10 skewed the Th1/Th2 balance to Th2-type responses by suppressing Th1-type cytokine production and augmenting Th2-type cytokine production in CD4(+) and CD8(+) T cells, as well as in CD19(+) B cells. Furthermore, IL-10 augmented the expression of CD38, an antigen marker of plasma cells, on B cells, which clearly indicates that IL-10 promoted differentiation and maturation of B cells in an IVI protocol. These results indicate that IL-10 plays an important role in setting the cellular milieu to produce antibodies in an IVI protocol.  相似文献   

18.
A key feature of helminth infections is the induction of strong Th2-biased immune responses in their hosts. We have previously found that Th2-like responses mediate susceptibility to the helminth parasite Taenia crassiceps, probably by inhibiting Th1 responses required for the development of protective immunity against this parasite. Here we show that mice lacking interleukin-12p35 (IL-12p35-/-) following T. crassiceps infection, failed to mount a Th1 response, but developed a strong Th2-type response, produced higher levels of IgG1, IgE, interleukin-4, interleukin-5 as well as interleukin-13 than wild-type mice, and became highly susceptible to the larval stage of this cestode. In contrast, similarly-infected CD40 deficient BALB/c mice (CD40-/-) displayed impairment of both Th1 and Th2-type responses associated with low levels of interferon-gamma as well as IgE, interleukin-4, interleukin-5 and interleukin-13, but efficiently controlled T. crassiceps infection. Together, these findings suggest a detrimental role for Th2-biased responses during the larval stage of T. crassiceps infection. Furthermore, they also suggest a pivotal role for CD40 in developing Th2-type responses.  相似文献   

19.
Prolonged topical exposure of BALB/c mice to chemical contact and respiratory allergens stimulates, respectively, preferential Th1- and Th2-type responses with respect to serum Ab isotype and cytokine secretion phenotypes displayed by draining lymph node cells. We now report that differential cytokine secretion patterns are induced rapidly in the skin following first exposure to the contact allergen 2,4-dinitrochlorobenzene (DNCB) and the respiratory sensitizer trimellitic anhydride (TMA). TMA induced early expression of IL-10, a cytokine implicated in the negative regulation of Langerhans cell (LC) migration, whereas exposure to DNCB resulted in production of the proinflammatory cytokine IL-1beta. Associated with this, TMA provoked LC migration with delayed kinetics compared with DNCB, and local neutralization of IL-10 caused enhanced LC mobilization in response to TMA with concomitant up-regulation of cutaneous IL-1beta. We hypothesize that these differential epidermal cytokine profiles contribute to the polarization of immune responses to chemical allergens via effects on the phenotype of activated dendritic cells arriving in the draining lymph node. Thus, TMA-exposed dendritic cells that have been conditioned in vivo with IL-10 (a potent inhibitor of the type 1-polarizing cytokine IL-12) are effective APCs for the development of a Th2-type response.  相似文献   

20.
Recent studies have demonstrated the critical role of IL-10 in susceptibility to cutaneous and visceral leishmaniasis caused by Leishmania major and Leishmania donovani, respectively. To determine whether IL-10 also plays a similar role in the susceptibility and pathogenesis of cutaneous leishmaniasis caused by the New World species, L. mexicana and L. amazonensis, we analyzed their course of infection in IL-10-deficient BALB/c mice and their wild-type counterparts. Although IL-10-deficient mice infected with either L. mexicana or L. amazonensis failed to control the lesion progression, we did observe consistently lower levels of infection in IL-10(-/-) mice compared with wild-type BALB/c mice. We also observed increased IFN-gamma and NO production and higher levels for IL-12p40 and IL-12Rbeta(2) mRNA in cells from IL-10(-/-) mice compared with cells from BALB/c mice. The mRNA levels for IL-4, which increased significantly in both IL-10(-/-) and BALB/c mice, were comparable. When treated with anti-IL-4 mAb, IL-10(-/-) mice resolved the infection more effectively and had significantly fewer parasites in their lesions compared with similarly treated BALB/c mice. These findings suggest that IL-10, although not the dominant mediator of susceptibility of BALB/c mice to infection with L. mexicana and L. amazonensis, does play a significant role in regulating the development of a protective Th1-type response. However, effective resolution of infection with these New World parasites requires neutralization of both IL-4 and IL-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号