首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The comparative distribution and coexistence of chromogranin A (CGA)-, serotonin (5-hydroxytryptamine; 5-HT)- and pancreastatin (PST)-like immunoreactivity in endocrine-like cells of the human anal canal was investigated by light-microscopic immunocytochemistry. The largest population of colorectal endocrine-like cells consisted of CGA-immunoreactive (ir) cells, followed by the 5-HT-ir and PST-ir cell population. In the anal transitional zone (ATZ), CGA-and 5-HT-immunoreactivity was equally distributed; ir-PST was confined to a smaller endocrine-like cell population. In the squamous zone and the perianal skin, Merkel cells in the basal layer of the epidermis and hair follicles exhibited ir-CGA and ir-PST but no ir-5-HT. Double immunofluorescence on identical sections revealed distinct coexistence patterns. In the colorectal zone, about 2/3 of the CGA-ir endocrine-like cells also stained for 5-HT, whereas in the ATZ epithelium, CGA- and 5-HT-immunoreactivity completely overlapped. No 5-HT-immunoreactivity could be detected in CGA-ir Merkel cells of the squamous zone of the anal canal and the perianal skin. PST-immunoreactivity was present in about 1/3 of the CGA-ir colorectal and anal transitional endocrine-like cells and in about 1/4 of the Merkel-cell population staining for CGA. These chemically heterogeneous phenotypes of the anal endocrine-like and Merkel cells may reflect a specific regulatory role of these cells in the various epithelial linings of the human anal canal and the perianal skin.  相似文献   

2.
Summary The epithelium of the anal canal from 22 humans was studied in order to demonstrate the possible presence of endocrine cells and melanin-containing cells. Histochemical methods aimed at demonstrating reducing substances, biogenic amines, argyrophilia and melanin, were used. Enterochromaffin cells, and possibly other types of endocrine cells, were demonstrated above the dentate line both in colo-rectal type epithelium and in the anal transitional zone. Melanin-containing cells could also occasionally be found in the anal transitional zone. The presence of endocrine cells in the anal canal epithelium opens up the possibility that carcinoids can originate in this region. Further, the presence of melanin-containing cells might explain the occurrence of malignant melanomas arising above the dentate line.  相似文献   

3.
Synopsis The histochemical properties of the mucins in seven benign epithelial tumours and 15 carcinomas distributed along the duodenum, jejunum and ileum were investigated and compared with normal controls. This study reveals that (a) goblet cells in normal small intestine contain neutral and sialomucins but no sulphated material; (b) the proportion of the different types of mucins in the goblet cells vary along the crypts and villi with an increasing amount of sialomucins towards the villus top; (c) mucin composition also changes from duodenum to ileum particularly in the proportions of sialic acid types and in the presence of traces of sulphomucins in the ileal mucosa close to the ileo-caecal valve, suggesting a gradual transition through the small intestine to the colon; (d) benign tumours show the same mucin pattern as normal mucosa; (e) the mucosa adjacent to carcinoma shows increasing amounts of sialomucins and sulphomucins; (f) carcinomas present a variety of mucin patterns, and thus the study of mucins seems to be of no value in differentiating tumours of the small intestine from those elsewhere in the gastrointestinal tract. A working hypothesis based on the Unitary Theory of the origin of the intestinal epithelial cells is proposed to explain the variations in glycoprotein synthesis with cell differentiation and carcinogenesis.  相似文献   

4.
We investigated the histological structure and histochemistry of the nasal conchae of geese and compared these structures with those of other avian species. The rostral, middle and caudal conchae were dissected from the nasal cavity of eight geese, fixed in Carnoy’s solution and embedded in paraffin. The entrance of the rostral concha was lined by keratinized stratified squamous epithelium, which toward the middle concha was replaced by modified keratinized squamous epithelium, the deep layer of which opened into tubular glandular structures containing secretory epithelium on crypt-like invaginations. The lamina propria of the rostral concha contained numerous Grandry’s and Herbst corpuscles, which are pressure-sensitive receptors peculiar to waterfowl. The lamina propria of the middle concha contained solitary lymphoid follicles and lymphocyte infiltrations. The cartilaginous component of the middle concha was highly convoluted and resembled a spiral of two and a half scrolls, which were lined by pseudostratified columnar epithelium. We observed that unlike mammals, this epithelium contained mostly intraepithelial alveolar glands rather than goblet cells. The caudal concha was similar to the middle concha, but less convoluted. It was lined by olfactory epithelium and its lamina propria contained serous Bowman’s glands as well as olfactory nerve fibers. Histochemical examination demonstrated that while none of the conchae contained sulfated mucins, except for the cartilage, the intraepithelial glands of the rostral and middle conchae contained mostly carboxylated acidic mucin and some neutral mucin, and were thus of the mixed type. The outermost scroll of the spiral of the middle concha contained some periodate-Schiff stained mucins. Of the glands of the mucosa of the middle concha, the deep tubuloalveolar glands in the convex parts of the scrolls contained primarily acidic mucins, while the shallow intraepithelial alveolar glands in the concave parts of the scrolls contained primarily neutral mucins. Our findings indicate that the rostral and caudal conchae primarily have a sensory function and the middle concha participates in mucosal defense.  相似文献   

5.
Two mucins were isolated from bovine submandibular glands and termed major and minor on a quantitative basis. The major mucin representing over 80% of the total glycoprotein fraction contained 37% of its dry weight as protein in contrast to 62% for the minor mucin. Differences in the amino acid composition reflected the higher proportion of typically non-glycosylated peptide in the minor mucin. The molar ratio ofN-acetylgalactosamine to serine plus threonine was 0.82 in major and 0.65 in minor mucins, indicating a lower degree of substitution of potential glycosylation sites in the minor mucin.Differences in the carbohydrate composition were found largely related to the sialic acids, with higher relative amounts ofN-glycoloylneuraminic acid in the minor mucin. In addition, the proportion of di-O-acetylated sialic acids was higher in the major mucin. The rate of sialidase action on the two mucins could be correlated with the content ofN-glycoloylneuraminic acid in each glycoprotein. There was no difference in the type of oligosaccharide found in each mucin and the differences in relative proportions reflected the monosaccharide composition for the two mucins. Gel filtration on Sepharose CL 2B showed a lower molecular weight distribution for the minor in contrast to the major mucin which was partially excluded. Density gradient centrifugation reflected this variation. SDS-PAGE demonstrated a regular banding pattern for the major mucin with a lowest subunit size of 1.8×105 Da and aggregates in excess of 106 Da, while the minor mucin ranged from 3.0 × 105 to 106 Da. The chemical composition of the isolated mucins was compared with previous histochemical analysis of mucin distribution in bovine submandibular glands and indicates a possible cellular location for each mucin.Abbreviations PBS 0.01m sodium phosphate buffer, pH 7.3, containing 0.15m NaCl - Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - GalNAc-ol N-acetylgalactosaminitol  相似文献   

6.
A structural and histochemical study of the tongue in the Anuran Amphibian Rana ridibunda was carried out. Histochemical analysis of the filiform and fungiform papillae of the dorsal epithelium has shown a variety of cellular types which may be characterized cytochemically. All of them, except the goblet cells, show a remarkable amount of neutral mucins. The intensity of histochemical positive reaction for sulphomucins, sialomucins and protein is variable according to the cell type. Other histochemical reactions show that the lingual glands are rich in neutral mucins, but not in sialomucins. Histochemically in the component the basic proteins with sulphydryl groups are demonstrated. This sulphydryl groups are more abundant in the glands located in the deep regions.  相似文献   

7.
S K Loo  W C Wong 《Acta anatomica》1975,91(1):97-103
The pattern of mucin secretion of the gastrointestinal tract of the toad (B. melanostictus) was investigated by histochemical methods. The goblet cells of the oesophagus secreted mainly acid mucins which were sialomucins, while the cells lining the surface of the stomach produced neutral mucins only. Goblet cells of the small intestine and cloaca secreted acid mucins, which were predominently sulphated mucins.  相似文献   

8.
In certain regions of the body, transition zones exist where stratified squamous epithelia directly abut against other types of epithelia. Certain transition zones are especially prone to tumorigenesis an example being the anorectal junction, although the reason for this is not known. One possibility is that the abrupt transition of the simple columnar epithelium of the colon to the stratified squamous epithelium of the proximal portion of the anal canal may contain a unique stem cell niche. We investigated whether the anorectal region contained cells with stem cell properties relative to the adjacent epithelium. We utilized a tetracycline-regulatable histone H2B-GFP transgenic mice model, previously used to identify hair follicle stem cells, to fluorescently label slow-cycling anal epithelial cells (e.g. prospective stem cells) in combination with a panel of putative stem cell markers. We identified a population of long-term GFP label-retaining cells concentrated at the junction between the anal canal and the rectum. These cells are BrdU-retaining cells and expressed the stem cell marker CD34. Moreover, tracking the fate of the anal label-retaining cells in vivo revealed that the slow-cycling cells only gave rise to progeny of the anal epithelium. In conclusion, we identified a unique population of cells at the anorectal junction which can be separated from the other basal anal epithelial cells based upon the expression of the stem cell marker CD34 and integrin a6, and thus represent a putative anal stem cell population.  相似文献   

9.
We describe the ultrastructural organization of the anal organs of Craterostigmus tasmanianus, which are located on the ventral side of the bivalvular anal capsule. Each part of the capsule bears four pore fields with several anal pores. The pores lead into a pore canal, which is surrounded by the single-layered epithelium of the anal organs. Each anal organ is composed of four different cell types: transporting cells of the main epithelium, junctional cells, isolated epidermal glands, and the cells forming the pore canal. The transporting cells exhibit infoldings of the outer cell membranes, forming a basal labyrinth and a poorly developed apical complex. The cells are covered by a specialized cuticle with a widened subcuticular layer. Only the cuticle of the main epithelium is covered by a mucous layer, secreted by the epidermal glands. The ultrastructural organization of the anal organ is comparable to the coxal and anal organs of other pleurostigmophoran Chilopoda. It is likely that the coxal and anal organs of the Pleurostigmophora are homologous, due to their identical ultrastructural organization. Differences concerning the location on the trunk of Pleurostigmophora are not sufficient to reject a hypothesis of homology. Anal organs are found not only in Craterostigmomorpha, but also in most adult Geophilomorpha, and in larvae and most adults of Lithobiomorpha. The anal organs of C. tasmanianus are thought to play an important role in the uptake of atmospheric water. J. Morphol.  相似文献   

10.
T Rettig  Z Halata 《Acta anatomica》1990,137(3):189-201
The sensory innervation of the anal canal of the pig was investigated by light and electron microscopy. The distribution of the different types of sensory nerve endings correlates with the histology of different zones: (1) After the rectal mucosa there was a zone lined with nonkeratinized stratified squamous epithelium. (2) A middle zone was lined with keratinized stratified squamous epithelium. Here the dermis already showed a papillary and reticular layer. (3) The last zone showed hairy skin with a high hair density. The following nerve endings were found: Free nerve endings reached the stratum superficiale in nonkeratinized squamous epithelium and the stratum granulosum in the keratinized squamous epithelium. Dermal free nerve endings were found in all zones near the epithelium and two different types were identified as those derived from C-fibers and those from A-delta-fibers. Merkel nerve endings showed different features depending on their location. Few Merkel-like cells were found in the epithelium of the anal crypts. Typical Merkel Tastscheiben were located at the base of epithelial ridges or pegs in zones 2 and 3. The number of Merkel cells varied up to 200. The myelinated afferent fiber supplied 10-15 Merkel cells. Merkel cells were also found regularly in the outermost layer of the external rooth sheath of hair follicles at about the same level as perifollicular nerve endings. Lamellated corpuscles were found in the dermis of all zones except the cranial part of zone 1, where the anal crypts are located. Generally they consisted of a central nerve terminal which may be branched. Each terminal was surrounded by an inner core of concentrically arranged lamellae of the terminal Schwann cell and one or several inner cores were included in a capsule of perineural cells. The size of the corpuscle, the regularity of the inner core and the number of capsular layers depended on the location of the corpuscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary Mucin histochemistry on sections of colon from germ-free and conventional mouse pups showed that all goblet cell mucins were sulphated at birth. During the first two weeks of post natal development, the pattern of mucin production in the ascending colon changed to a distribution of non-sulphated mucins towards the apical zone of the crypts and sulphated sialomucins basally. In conventional animals during the third postnatal week when the complex micro-flora of the colon was becoming established, the typical adult mucin distribution pattern developed, with sulphated mucins now confined to the upper third of the crypt. However, in the absence of a colonizing micro-flora crypt mucins become more and more sulphated until at weaning, most goblet cells of the ascending colon were producing fully or partially sulphated mucins, except for one or two cells at the very base of the crypt.  相似文献   

12.
This study describes anatomical, histological and histochemical features of the digestive tract mucosal layer of the matrinxã Brycon amazonicus, an omnivorous freshwater fish endemic from the Amazon basin. This species presents short thick oesophagus with longitudinal folds, that allow the passage of large food items. The mucosa is lined with a stratified secretory epithelium rich in goblet cells that secrete neutral and acid mucins. The two mucin types provide different viscosity in anterior and posterior oesophagus related to the protective and lubricant functions, respectively. The stomach is a highly distensible Y-shaped saccular organ. Here, it is proposed that this anatomical shape plays an essential role in food storage when food availability is abundant. The stomach mucosa is composed of epithelial cells with intense neutral mucin secretion to protects against gastric juice. The intestine is slightly coiled and presents internally a complex pattern of transversal folds that increases the absorption surface and the retention time of food. Goblet cells in the intestine secrete acid and neutral mucins that lubricate the epithelium and aid in the digestive processes. In the rectum, an increase in goblet cells population occurs that may be related to better lubrication.  相似文献   

13.
Summary In Rhapidostreptus virgator exocrine gland complexes are found in the anal valves of both sexes. Every gland complex consists of about 200 secretory units, each of which is comprised of four cells: two secretory cells, an intermediary cell, and a canal cell. The amount of secretion produced by these glands varies during the intermoult cycle: it is very small in freshly moulted individuals (postmoult phase), at a medial level during the following intermoult phase, and very large in the premoult phase. The secretion may be used to form the excrement clumps and above all to build the moulting chamber.  相似文献   

14.
The current study shows cytological differences between the anal glands of pre‐spawning and spawning peacock blennies Salaria pavo. The cytological differences in the anal gland coincide with higher olfactory potency of their secretions in spawning males, suggesting that seasonal differentiation of cell clusters secreting neutral mucins is related to the production and release of the putative sex pheromone.  相似文献   

15.
In certain regions of the body, transition zones exist where stratified squamous epithelia directly abut against other types of epithelia. Certain transition zones are especially prone to tumorigenesis an example being the anorectal junction, although the reason for this is not known. One possibility is that the abrupt transition of the simple columnar epithelium of the colon to the stratified squamous epithelium of the proximal portion of the anal canal may contain a unique stem cell niche. We investigated whether the anorectal region contained cells with stem cell properties relative to the adjacent epithelium. We utilized a tetracycline-regulatable histone H2B-GFP transgenic mice model, previously used to identify hair follicle stem cells, to fluorescently label slow-cycling anal epithelial cells (e.g., prospective stem cells) in combination with a panel of putative stem cell markers. We identified a population of long-term GFP label-retaining cells concentrated at the junction between the anal canal and the rectum. These cells are BrdU-retaining cells and expressed the stem cell marker CD34. Moreover, tracking the fate of the anal label-retaining cells in vivo revealed that the slow-cycling cells only gave rise to progeny of the anal epithelium. In conclusion, we identified a unique population of cells at the anorectal junction which can be separated from the other basal anal epithelial cells based upon the expression of the stem cell marker CD34 and integrin α6, and thus represent a putative anal stem cell population.Key words: stem cells, transitional epithelium, keratinocyte, slow-cycling, label retaining cell  相似文献   

16.
A complex of lymphoepithelial organs, the “anal tonsils,” is a consistent structure in the anal canal of the bottlenose dolphin, Tursiops truncatus. This complex occurs as a circumferential cluster of discrete tonsil like aggregations of lymphoid tissues, together with epithelial ducts (“crypts”) and occasional mucus secretory units in the extreme lower portion of the intestinal tract. These structures are concentrated in the segment lined by stratified squamous epithelium and extend for a variable distance cephalad from the anal aperture. The tonsils appear to be most active, judged by the amount of lymphoid tissue present, in young animals. Depletion of lymphocytes and cystic enlargement of the crypts, probably representing functional as well as morphological involution, is a consistent feature of older animals. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Summary The secretion present at the lumen of the salivary glands of spinning larvae ofRhynchosciara americana was studied cytochemically and with microspectrophotometry and fluorescence and quantitative polarization microscopy. It was found that structural proteins, including glycoproteins and lipoproteins, occur in this secretion. Findings involving spectral absorption profiles after xylidine ponceau staining, patterns of birefringence and dispersion of birefringence, and lack of dichroism after xylidine ponceau staining and of blue fluorescence after ANS staining are highly suggestive that the secretion ofR. americana differs from classical silks not only in terms of composition but also of macromolecular array. The silk secretion ofR. americana also appears to differ from that of another sciarid,Bradysia spatitergum. Part of the glycoproteins present at the glandular lumen is assumed to be extruded from cells of the posterior zone of the glands, whereas other glycoproteins (or their glycidic radicals) are probably removed from fat body cells via cells of the anterior zone of the glands. The salivary secretion of the spinning larvae ofR. americana contains calcium and is devoid of acid glycosaminoglycans.  相似文献   

18.
The three species of bats studied show glycogen, neutral, sialo- and sulfomucins in the cells of the uterine epithelium and glands. Elaboration of these mucins occurs during anestrus in Pteropus giganteus and during proestrus in Taphozous longimanus. In Megaderma lyra lyra only glycogen is observed during anestrus and proestrus. Neutral, and sialomucins in addition to glycogen are observed during estrus. The concentration of these mucins increases progressively and is maximum at the time of implantation, decreasing thereafter in all the three species of bats. The elaboration and increase of mucins is probably under the influence of hormones of the ipsilateral ovary.  相似文献   

19.
The biochemical and histochemical properties of intestinal mucin glycoproteins of virus and parasite-free common carp Cyprinus carpio were investigated. The presence of carbohydrates in mucin glycoproteins could be demonstrated by histochemical methods, but generally, no obvious differences in specific staining for mucin glycoproteins were observed in contrast to biochemical techniques. Biochemical staining methods displayed differences in structure and composition of intestinal glycoproteins. Released intestinal glycoproteins contained two types of mucin glycoproteins: type 1 mucins displayed a size of >2000 kDa, and were highly glycosylated, while type 2 mucins ranged between 700 and 70 kDa, and were weakly glycosylated. In epithelial (intracellular) glycoproteins, mainly N-acetyl-α-galactosamine and mannose were found, while in luminal (extracellular) glycoproteins in addition sialic acid was evident. Fucose was not detected. Thus, structure and composition of intestinal glycoproteins of common carp were similar to those found in mammals.  相似文献   

20.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号