首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A p-nitrophenol (PNP)- and phenol-mineralizing bacterium (strain NSP41) was isolated from an industrial wastewater and identified as a member of the genus Nocardioides. PNP was degraded via a hydroquinone pathway, and phenol was degraded through a catechol pathway in strain NSP41. Both enzyme systems for the degradation of PNP and phenol were induced simultaneously in the presence of both compounds. Although both enzyme systems were induced at the same time, PNP and phenol were degraded by the hydroquinone and catechol pathway, respectively. However, during the simultaneous degradation in the low phenol concentration, after the exhaustion of phenol, some PNP was transformed by the catechol pathway and 4-nitrocatechol was transiently accumulated. Kinetically, the addition of phenol greatly enhanced the apparent PNP degradation rate, which may be due to the increased cell mass by the assimilation of phenol.  相似文献   

2.
Kinetics of biodegradation of p-nitrophenol by different bacteria   总被引:9,自引:0,他引:9  
Three bacterial species, i.e., Ralstonia sp. SJ98, Arthrobacter protophormiae RKJ100, and Burkholderia cepacia RKJ200, have been examined for their efficiency and kinetics behavior toward PNP degradation. All the three bacteria utilized PNP as the sole source of carbon, nitrogen, and energy. The rates of radiolabeled [U-(14)C]PNP degradation by all the bacteria were higher in the nitrogen-free medium compared to the medium with nitrogen. The apparent K(m) values of PNP degradation by SJ98, RKJ100, and RKJ200 were 0.32, 0.28, and 0.23 mM, respectively, as determined from the Michaelis-Menten curves. The maximum rates of PNP degradation (V(max)) according to Lineweaver-Burk's plots were 11.76, 7.81, and 3.84 micromol PNP degraded/min/mg dry biomass, respectively. The interpretation drawn from the Lineweaver-Burk's plots showed that the PNP degradation by SJ98 was stimulated by 4-nitrocatechol and 1, 2,4-benzenetriol. Benzoquinone and hydroquinone inhibited PNP degradation by RKJ100 noncompetitively and competitively, respectively, whereas in the case of RKJ200, benzoquinone and hydroquinone inhibited PNP degradation in an uncompetitive manner. beta-Ketoadipate did not affect the rate of PNP degradation in any case.  相似文献   

3.
Microbial consortia capable of degrading 3-chlorophenol (3-CP) were enriched in continuous up-flow column reactors under circum-denitrifying conditions. 3-CP degradation capability was developed and sustained when 3-CP was supplied at 16-21 microM, although suppression of the 3-CP degradation capability was observed when 3-CP was supplied at 42 microM. When 3-CP was stably degraded, the ratio of nitrate consumption to 3-CP degradation approached the theoretical stoichiometric value, which was calculated by assuming a 3-CP degradation-dependent nitrate reduction. Batch-incubation experiments demonstrated that the microbial consortium that was enriched in the column reactors required either nitrate or oxygen for degrading 3-CP, while 3-CP was not degraded under sulfate-degrading conditions. Although many attempts were made to sustain the microbial 3-CP degradation capability under denitrifying conditions, mostly in batch cultures, none of them have been successful so far. Therefore, the results obtained in this study may be the first to demonstrate sustainable 3-CP degradation capability under circum-denitrifying conditions.  相似文献   

4.
Arthrobacter protophormiae strain RKJ100 is capable of utilizing p-nitrophenol (PNP) as well as 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy. The degradation of PNP and NC by this microorganism takes place through an oxidative route, as stoichiometry of nitrite molecules was observed when the strain was grown on PNP or NC as sole carbon and energy sources. The degradative pathways of PNP and NC were elucidated on the basis of enzyme assays and chemical characterization of the intermediates by TLC, GC, (1)H NMR, GC-MS, UV spectroscopy, and HPLC analyses. Our studies clearly indicate that the degradation of PNP proceeds with the formation of p-benzoquinone (BQ) and hydroquinone (HQ) and is further degraded via the beta-ketoadipate pathway. Degradation of NC involved initial oxidation to generate 1,2,4-benzenetriol (BT) and 2-hydroxy-1,4-benzoquinone; the latter intermediate is then reductively dehydroxylated, forming BQ and HQ, and is further cleaved via beta-ketoadipate to TCA intermediates. It is likely, therefore, that the same set of genes encode the further metabolism of HQ in PNP and NC degradation. A plasmid of approximately 65 kb was found to be responsible for harboring genes for PNP and NC degradation in this strain. This was based on the fact that PNP(-) NC(-) derivatives were devoid of the plasmid and had simultaneously lost their capability to grow at the expense of these nitroaromatic compounds.  相似文献   

5.
We have isolated two soil bacteria (identified as Arthrobacter aurescens TW17 and Nocardia sp. strain TW2) capable of degrading p-nitrophenol (PNP) and numerous other phenolic compounds. A. aurescens TW17 contains a large plasmid which correlated with the PNP degradation phenotype. Degradation of PNP by A. aurescens TW17 was induced by preexposure to PNP, 4-nitrocatechol, 3-methyl-4-nitrophenol, or m-nitrophenol, whereas PNP degradation by Nocardia sp. strain TW2 was induced by PNP, 4-nitrocatechol, phenol, p-cresol, or m-nitrophenol. A. aurescens TW17 initially degraded PNP to hydroquinone and nitrite. Nocardia sp. strain TW2 initially converted PNP to hydroquinone or 4-nitrocatechol, depending upon the inducing compound.  相似文献   

6.
4-Chlorophenol (4-CP) degradation was investigated by suspended and immobilized Phanerochaete chrysosporium conducted in static and agitated cultures. The best results were achieved when experiment was carried out in a rotating biological contactor instead of an Erlenmeyer flask, for both batch degradation and repeated batch degradation. The relative contribution of lignin peroxidase (LiP) versus manganese peroxidase (MnP) to the 4-CP degradation by P. chrysosporium was investigated. 4-CP degradation slightly increased and a high level of MnP (38 nKat ml(-1)) was produced when P. chrysosporium was grown at high Mnll concentration. High LiP production in the medium had no significant effect on 4-CP degradation. 4-CP degradation occurred when P. chrysosporium was grown in a medium that repressed LiP and MnP production. This result indicates that LiP and MnP are not directly involved in 4-CP degradation by P. chrysosporium.  相似文献   

7.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   

8.
Many microorganisms fail to degrade pollutants when introduced in different natural environments. This is a problem in selecting inocula for bioremediation of polluted sites. Thus, a study was conducted to determine the success of four inoculants to degradep-nitrophenol (PNP) in lake and industrial wastewater and the effects of organic compounds on the degradation of high and low concentrations of PNP in these environments.Corynebacterium strain Z4 when inoculated into the lake and wastewater samples containing 20 µg/ml of PNP degraded 90% of PNP in one day. Addition of 100 µg/ml of glucose as a second substrate did not enhance the degradation of PNP and the bacterium utilized the two substrates simultaneously. Glucose used at the same concentration (100 µg/ml), inhibited degradation of 20 µg of PNP in wastewater byPseudomonas strain MS. However, glucose increased the extent of degradation of PNP byPseudomonas strain GR. Phenol also enhanced the degradation of PNP in wastewater byPseudomonas strain GR, but had no effect on the degradation of PNP byCorynebacterium strain Z4.Addition of 100 µg/ml of glucose as a second substrate into the lake water samples containing low concentration of PNP (26 ng/ml) enhanced the degradation of PNP and the growth ofCorynebacterium strain Z4. In the presence of glucose, it grew from 2×104 to 4×104 cells/ml in 3 days and degraded 70% of PNP as compared to samples without glucose in which the bacterium declined in cell number from 2×104 to 8×103 cells/ml and degraded only 30% PNP. The results suggest that in inoculation to enhance biodegradation, depending on the inoculant, second organic substrate many play an important role in controlling the rate and extent of biodegradation of organic compounds.Abbreviations PNP p-nitrophenol  相似文献   

9.
A bacterium, isolated from contaminated soils around a chemical factory and named strain DSP3 was capable of biodegrading both chlorpyrifos and 3,5,6-trichloro-2-pyridinol. Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences, DNA G+C content, and DNA homology between strain DSP3 and reference strains, strain DSP3 was identified as Alcaligenes faecalis. Chlorpyrifos was utilized as the sole source of carbon and phosphorus by strain DSP3. We examined the role of strain DSP3 in the degradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol under different culture conditions. Parathion and diazinon could also be degraded by strain DSP3 when provided as the sole sources of carbon and phosphorus. An addition of strain DSP3 (10(8)cells g(-1)) to soil with chlorpyrifos (100 mg kg(-1)) resulted in a higher degradation rate than the one obtained from non-inoculated soils. Different degradation rates of chlorpyrifos in six types of treated soils suggested that soils used for cabbage growing in combination with inoculation of strain DSP3 showed enhanced microbial degradation of chlorpyrifos.  相似文献   

10.
The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.  相似文献   

11.
COD, nitrogen, phosphate and para-chlorophenol (4-chlorophenol, 4-CP) removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different sludge ages and initial para-chlorophenol (4-CP) concentrations. The nutrient removal process consisted of anaerobic, oxic, anoxic and oxic phases with hydraulic residence times (HRT) of 1/3/1/1 h and a settling phase of 0.75 h. A Box-Wilson statistical experiment design was used considering the sludge age (5-25 days) and 4-CP concentration (0-400 mg l(-1)) as independent variables. Variations of percent COD, NH4-N, PO4-P and 4-CP removals with sludge age and initial 4-CP concentration were investigated. Percent nutrient removals increased with increasing sludge age and decreasing 4-CP concentrations. Low nutrient removals were obtained at high initial 4-CP concentrations especially at low sludge ages. However, high sludge ages partially overcome the adverse effects of 4-CP and resulted in high nutrient removals. COD, NH4-N, PO4-P and 4-CP removals were 76%, 72%, 26% and 34% at a sludge age of 25 days and initial 4-CP concentration of 200 mg l(-1). Sludge volume index (SVI) also decreased with increasing sludge age and decreasing 4-CP concentrations. An SVI value of 104 ml g(-1) was obtained at a sludge age of 25 days and initial 4-CP of 200 mg l(-1).  相似文献   

12.
Summary Two indigenous and one non-indigenous bacterial strains were evaluated for their ability to degrade p-nitrophenol (PNP) in pure culture. When these bacterial strains were inoculated into industrial wastewater to enhance the degradation of PNP in the presence or absence of glucose, all three strains degraded 20 mg/l of PNP with or without added glucose. With PNP (20 mg/l) and glucose (100 mg/l), non-indigenous strain Corynebacterium Z-4 utilized glucose and PNP simultaneously. Unexpectedly, indigenous strains Pseudomonas putida and Corynebacterium Z-2 utilized PNP first. The behavior of the non-indigenous isolate Corynebacterium Z-4 was also somewhat surprising because when inoculated into lake water containing 26 ug/l of PNP and 100 mg/l of glucose, it preferentially utilized glucose (Zaidi et al. 1995). However, in industrial wastewater containing the same PNP and glucose concentrations, it instead switched and utilized PNP first.  相似文献   

13.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

14.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments   总被引:12,自引:0,他引:12  
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

15.
Pseudomonas aeruginosa strain HS-D38 was capable of mineralizing p-nitrophenol (PNP) as the sole source of carbon, nitrogen and energy. Degradation of 200 mg L?1 PNP was examined in different media including: (i) MSM (mineral salts medium, no carbon and nitrogen source); (ii) addition of 1% ammonium chloride as additional nitrogen source (ANM); and (iii) addition of 1% glucose as a carbon source (ACM). Complete degradation of 200 mg L?1 PNP was achieved in 12 h in MSM. Additional ammonium chloride accelerated the PNP degradation, but additional glucose inhibited this process. This strain metabolized as high concentration as 300 and 500 mg L?1 of PNP in 14 h and 24 h, respectively, in MSM. The degradation was accompanied by release of stoichiometric amount of nitrate from PNP. During the bacterial growth on PNP, hydroquinone and 1,2,4-benzenetriol were observed as the key degradation intermediates by using a combination of techniques, including HPLC–DAD and LC–ESI/MS compared with the authentic standards. These results indicated that PNP was degraded via a hydroquinone pathway.  相似文献   

16.
Jia KZ  Cui ZL  He J  Guo P  Li SP 《FEMS microbiology letters》2006,263(2):155-162
A bacterium strain, which is capable of degrading monocrotophos, was isolated from sludge collected from the bottom of a wastewater treatment system of a chemical factory, and named M-1. On the basis of the results of the cellular morphology, physiological and chemotaxonomic characteristics and phylogenetic similarity of 16S rDNA gene sequences, the strain was identified as a Paracoccus sp. The ability of the strain to mineralize monocrotophos was investigated under different culture conditions. Other organophosphorus insecticides and amide herbicides were also degraded by M-1. The key enzyme (s) involved in the initial biodegradation of monocrotophos in M-1 was shown to be a constitutively expressed cytosolic protein. The addition of M-1 (10(6) CFU g(-1)) to fluvo-aquic soil and a high-sand soil containing monocrotophos (50 mg kg(-1)) resulted in a higher degradation rate than that obtained from noninoculated soil. This microbial culture has great potential utility for the bioremediation of wastewater or soil contaminated with organophosphorus pesticides and amide herbicides.  相似文献   

17.
Pseudomonas vesicularis and Staphylococcus sciuri were isolated as dominant strains from phenol-acclimated activated sludge. P. vesicularis was an efficient degrader of phenol, catechol, p-cresol, sodium benzoate and sodium salicylate in a single substrate system. Under similar conditions S. sciuri degraded only phenol and catechol from among aromatic compounds that were tested. Cell-free extracts of P. vesicularis grown on phenol (376 mg l(-1)), sodium benzoate (576 mg l(-1)) and sodium salicylate (640 mg l(-1)) showed catechol 2,3-dioxygenase activity initiating an extradiol (meta) splitting pathway. The degradative intradiol (ortho) pathway as a result of catechol 1,2-dioxygenase synthesis was induced in P. vesicularis cells grown on catechol (440 mg l(-1)) orp-cresol (432 mg l(-1)). Catechol 1,2-dioxygenase and the ortho-cleavage has been also reported in S. sciuri cells capable of degrading phenol (376 mg l(-1)) or catechol (440 mg l(-1)). In cell-free extracts of S. sciuri no meta-cleavage enzyme activity was detected. These results demonstrated that gram-positive S. sciuri strain was able to effectively metabolize some phenols as do many bacteria of the genus Pseudomonas but have a different capacity for degrading of these compounds.  相似文献   

18.
The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. We have isolated a strain of an Arthrobacter sp., JS443, capable of degrading PNP with stoichiometric release of nitrite. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy (GC-MS) and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system in strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Our results clearly indicate the existence of an alternative pathway for the biodegradation of PNP.  相似文献   

19.
A soil bacterium strain, capable of using p-nitrophenol (PNP) as its sole source of carbon and energy, was isolated by enrichment on minimal salt medium (MSM). On the basis of a phylogenetic analysis of 16S rRNA gene sequences the bacterium is a species of Arthrobacter, closely related to Arthrobacter ureafaciens DSM 20126. This strain has an unusually high substrate tolerance for PNP degradation in MSM. Greatest degradation of PNP was observed at 30 °C and under slightly alkaline pH (pH 7–9) conditions. Effective degradation rates slowed as the concentration of PNP was increased. Addition of glucose from 0.1% to 0.5% generally enhanced the degradation of PNP at high concentration (400 mg/l) although acidification as a result of glucose metabolism had a negative effect on PNP depletion. Biodegradation of PNP at high concentration was greatly accelerated by β-cyclodextrin at a concentration of 0.5%, indicating that β-cyclodextrin could be a promising addictive for effective PNP bioremediation.  相似文献   

20.
A novel actinobacterium, designated PNP1(T), was isolated from a wastewater treatment plant at a pesticide factory by selective enrichment with para-nitrophenol. The strictly aerobic strain PNP1(T) grew with para-nitrophenol as the sole carbon and energy source. Metabolism of para-nitrophenol resulted in the stoichiometric release of nitrite. When incubated with both para-nitrophenol and acetate, para-nitrophenol was degraded and utilized as growth substrate prior to acetate. When grown on acetate (in the absence of ammonium) both nitrite and nitrate served as nitrogen sources, nitrate being quantitatively reduced to nitrite which accumulated in cultures during aerobic growth. Cells were coccoid and stained Gram-positive, were non-motile and did not form endospores. Colonies of strain PNP1(T) on agar medium were bright yellow, circular and smooth. The dominant menaquinone was MK-8(H(2)) (54%) and the major cellular fatty acid was anteiso C15:0 (75%). Strain PNP1(T) grew optimally at 27°C, at pH 8-8.5, at salinities 3% (w/v) NaCl, yet exhibited a substantial halotolerance with growth occurring at salinities up to 17% (w/v) NaCl. In addition to para-nitrophenol, a range of sugars, short chain fatty acids and alcohols served as electron donors for growth. The DNA G + C mol% was 68%. The genotypic and phenotypic properties suggest that strain PNP1(T) represents a novel species of the actinobacterial genus Citricoccus for which the name Citricoccus nitrophenolicus is proposed. It is the first member of this genus that has been reported to hydrolyze and grow on para-nitrophenol. The type strain is PNP1(T) (=DSM 23311(T) = CCUG 59571(T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号