首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutman (Arm. Bot. 21, 321, 1957) found that preplanting agarslopes with Trifolium pratense L. or Medicago sativa L. advancedthe time when second lots of plants of these species grown onthe same slopes initiated nodules, and depressed the total numberof nodules formed. He attributed these effects to root secretionswhich at low concentration hasten initial nodulation but athigher concentrations inhibit nodule formation. Further workhas now shown that initial nodulation is stimulated becausethe preplant removes traces of nitrate from the medium. Theamount of nitrate in the tap water used to prepare the medium(6?5 p.p.m. N) also increases the number of nodules formed onthe control plants, and this effect explains to a considerableextent the depression of nodule numbers by preplanting. Initial nodulation was delayed by small amounts of nitrate andnitrite but not by other forms of combined nitrogen (ammonium,asparagine, and urea). All forms of combined nitrogen testedincreased the number of nodules formed over a period of 8 weekswhen supplied at an initial concentration of 20 p.p.m. N.  相似文献   

2.
Rhizobium-inoculatcd plants of Phaseolus vulgaris L. were grownwith different N-sources (nitrate, ammonium, urea) and differentconcentrations of urea. The distribution of growth between plantparts varied with N-sources. Nitrate and ammonium were moreinhibitory to nodulation than urea, which at 40 mol m–3N had no effect. Urease activity varied in amount and locationover a range of urea concentrations. At higher concentrations,more urea was transported to and increased urease activity wasfound in the shoot Lower levels of activity in plants relianton N2-fixation were consistent with a ureide-degradation pathwaynot involving urea. Moderate doses of urea could be assimilatedconcomitantly with N2-fixation. At higher levels of appliedurea, nodulation and ureide transport to the shoots were reduced,although increased growth could not be maintained at concentrationsof applied urea greater than 6.0 mol m–3 urea N. Key words: Phaseolus vulgaris, growth, nitrogen source, urease  相似文献   

3.
4.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

5.
Fifteen nodulins and several nodule-stimulated gene productswere expressed in effective, nitrogen-fixing root nodules ofwhite sweetclover (Melilotus alba Desr. cv. U389), as determinedby two-dimensional gel electrophoresis of in vitro translationproducts. The number and gel position of eight leghaemoglobin(Lb) products, as well as a product tentatively identified asnodule-stimulated glutamine synthetase (GS), was similar toprevious reports of alfalfa (Medicago sativa L. cv. Iroquois)nodulins. Three mutants of Rhizobium meliloti, including anexoH mutant, a lipopolysaccharide mutant, and a nifH mutant,elicited ineffective sweetclover nodules blocked at empty (bacteria-free),partially infected, or fully infected stages of nodule development,respectively. In these ineffective nodules, the nodulin Nma30and nodule-stimulated NSTma42 were expressed early in development,while a group of four nodulins and two nodule-stimulated productswere intermediate in order of expression. Lb, GS and the latenodulin Nmal2a were expressed later, following infection. TheexoH mutant, Rm7154, appeared to be a leaky mutant, as a smallpercentage of the plants developed nitrogen-fixing nodules about4 weeks after inoculation. The sequential expression of a largenumber of nodulins and nodule-stimulated products, as well asthe availability of sweetclover nodulation mutants indicatesthat sweetclover is a useful diploid system for analysis ofhost genes essential to the Rhizobium/legume symbiosis. Key words: Nitrogen fixation, nodulation mutants, nodulins  相似文献   

6.
DARBYSHIRE  J. F. 《Annals of botany》1966,30(4):623-638
Small amounts of nitrate or nitrite salts (10 µg N/plant)in the root medium of Trifolium glomeratum or T. repens delayednodulation, prolonged the initial rapid phase of root infectionand slightly stimulated lateral root formation, whereas equivalentquantities of ammonium sulphate or urea did not. Growth of rootsand root hairs was unaffected by any of these substances at10 µg N/plant. Altering the carbohydrate status of the clover seedlings byadding glucose to the root medium, or by changing day lengthor light intensity, influenced neither the stimulation of root-hairinfection nor the delay in nodulation induced by nitrate at10 fig N/plant, except that plants grown in total darkness hadfewer hairs infected when the root medium contained small amountsof nitrate. The nitrogenous compounds at 100 µg to 1,000 µg N/plant generally delayed and decreased nodulation,increased lateral root formation, slowed hair infection, andincreased root growth.  相似文献   

7.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

8.
The aquatic legume Neptunia plena (L.) Benth. was grown in non-aeratedwater culture or vermiculite. Growth, nodulation, nitrogen fixationand nodule physiology were investigated. Over an 80-d period,plants grew and fixed nitrogen and carbon equally well in bothrooting media, although distribution of growth between plantparts varied. Total nodule dry weights and volumes were similarbut vermiculite-grown plants had three times as many (smaller)nodules than those grown in water. Oxygen diffusion resistanceof nodules exposed to 21% oxygen and 10% acetylene did not differsignificantly. Both treatments showed similar declines in rootrespiration and acetylene reduction activity (approx. 10%) whenroot systems were exposed to stepped decreases and increasesin rhizosphere oxygen concentration. However, nitrogenase activityof aquatically grown plants was irreversibly inhibited by rapidexposure of nodules to ambient air, whereas vermiculite-grownplants were unaffected. Aeration of water-cultured N. plenareduced stem length (but not mass) and number of nodules perplant. The concentration of nitrogen fixation by 163%. PossibleO2 transport pathways from the shoot atmosphere to roots andnodules are discussed. Aquatic legume, diffusion resistance, Neptunia plena, nitrogen fixation, oxygen, root nodules  相似文献   

9.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

10.
Male Sterility and Anther Wall Structure in Copper-deficient Plants   总被引:5,自引:0,他引:5  
DELL  B. 《Annals of botany》1981,48(5):599-608
Anther development and pollen sterility were followed in plantsof wheat, oat, barley, sweetcorn, sunflower, petunia and subterraneumclover grown at a range of copper supplies. Copper-deficientplants had increased pollen sterility. Lignified wall thickenings were reduced or absent in the endotheciaof anthers from Cu-deficient plants. Reduced seed set may resultboth from reduced pollen fertility or failure of the stomiato rupture due to decreased lignification of anther walls. Triticum aestivum L., wheat, Hordeum vulgare L., barley, Avena sativa L., oat, Zea mays L., corn, sweetcorn, maize, Helianthus annuus L., sunflower, Petunia hybrida L., Trifolium subterraneum L., subterranean clover, male sterility, anther development, copper deficiency  相似文献   

11.
Summary The effectiveness of three different strains ofRhizobium trifolii on a diploid and a tetraploid variety of red clover (Trifolium pratense) grown in aseptic mineral-agar culture was compared. It was found that with two of the rhizobial strains tested, the tetraploid plants were slower to nodulate than the diploid plants, but that a hundred per cent nodulation was obtained in both cases. With the third strain, however, a sixty-six per cent nodulation of the diploid plants was reduced to an eight per cent nodulation of the tetraploids.In general, over a given period, fewer nodules were formed on the tetraploid plants, but these tended to be larger than on the diploids. The fresh weight of the tetraploid plants always exceeded that of the diploids, but less so in cases of poorly nodulated plants.  相似文献   

12.
The regulation and nitrate inhibition of nodule formation insoybean, Glycine max (L.) Merr., was further examined usingthe nodulation mutants of cv. Enrei. The non-nodulating mutantsEn115, Enl282, and En1314 produced extremely few markedly-curledroot hairs which were all devoid of infection threads, and invariablyfailed to initiate sub-epidermal cell divisions (SCDs) in theroot cortex. A considerable number of arrested SCDs was foundbefore nodule emergence in Enrei, but not in En6500 which hadsignificantly more SCDs that progressively increased at moreadvanced stages of nodule ontogeny. These observations indicatethat autoregulation acts by blocking the developmental stagebefore nodule emergence. In both Enrei and En65OO, the maturationof emerged nodules was restricted by a late-acting nodulationcontrol mechanism that is apparently unrelated to autoregulation.Reciprocal wedge-grafts of plants inoculated at sowing showedthat the control of the supernodulating phenotype resides inthe shoot, while the non-nodulating phenotype is strictly root-controlled.The nodulation phenotype of the current non-nodulating mutantsresults not from an alteration of the autoregulatory mechanism,but from mutation that exerts a root-localized effect that blocksSCDs which trigger the autoregulatory mechanism. Reciprocalgrafting experiments on Enrei and En6500 seedlings grown undervarious nitrate levels suggest that nitrate inhibition of nodulation,like autoregulation, is shoot-controlled. Since these two processesare invariably expressed together, they are probably causallyrelated, acting synergistically to regulate nodule formationin soybean. These results indicate that the regulation and nitrateinhibition of nodulation in the nodulation mutants of cv. Enreiare similar to those of cv. Bragg nodulation mutants. Key words: Autoregulation, nitrate-tolerant symbosis, non-nodulating mutants, soybean, supernodulating mutant  相似文献   

13.
HEPPER  C. M. 《Annals of botany》1978,42(1):109-115
Five to 7 per cent of plants of Trifolium repens L. and T.pratenseL. and 100 per cent of plants of T. subterraneum L. were nodulatedby Rhizobium leguminosarum but none of T. hybridum L., T. glomeratumL. or T parvifirum Ehrh. The frequency of nodulation of T. pratenseby R. leguminosarum was much increased by breeding from susceptibleplants. Such plants were not nodulated by bacteria isolatedfrom any other cross-inoculation group, but remained fully susceptibleto R. trifolii. The nodules formed by R. leguminosarum are generallyassociated with lateral roots and are ineffective.  相似文献   

14.
Detailed individual nodulation profiles were obtained for five strains of Rhizobium leguminosarum biovar trifolii inoculated onto roots of Trifolium repens seedlings growing on an agar medium of pH 4.5. The time of appearance and the location of every nodule were noted for a period of 10 days after inoculation. Using these nodulation frequency profiles, pairings of strains were identified and six mixed-strain inoculation (1:1 ratio) experiments were subsequently performed at pH 4.5. Results from the mixed-inoculum experiments showed that the performance of a Rhizobium strain in single culture could not be reliably used to predict the outcome of a paired-inoculation study and that some seedlings were exclusively nodulated by rhizobia that performed poorly at low pH in single-culture inoculations. Received: 26 November 1996 / Accepted: 18 April 1997  相似文献   

15.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

16.
Cotyledons of faba bean (Vicia faba L. cv. Fiord) were removedto determine whether an apparent delay in nodulation of thiscultivar could be attributed to an inhibitor from these organs.Cotyledons were left intact or excised from seedling plants14 and 18 d after sowing and plants grown with or without 2·5mm NO3. Seedling growth was depressed when cotyledons were removed onday 14 but not when removed on day 18. Removal of the cotyledonsat day 14 reduced nodule number and nodule weight in the absenceof NO3, but in the presence of NO2, nodule numberwas unaffected and only nodule weight was reduced. Cotyledonremoval at day 18 increased both nodule number and nodule weightwith +NO3 but not with –NO2. Acetylene reduction(AR) was markedly depressed by NO3. Cotyledon removalat day 14 decreased AR but removal at day 18 resulted in anincrease in AR. We suggest from these results that faba beancotyledons have an inhibitory effect on nodule activity andon nodulation and this interacts with NO3. This can beexplained through a ‘feed-back’ regulation of N2fixation by soluble N in the seedling. Vicia faba, faba bean, nodule number, nodulation, nodule activity, acetylene reduction, N2 fixation, cotyledon removal, nitrate  相似文献   

17.
Saprophytic rhizoactinomycetes isolated from the root nodule surface of the nitrogen-fixing actinorhizal plant Discaria trinervis, Streptomyces MM40, Actinoplanes ME3, and Micromonospora MM18, previously shown to stimulate nodulation in Frankia-Discaria trinervis symbiosis, were assayed as co-inoculants with Sinorhizobium meliloti 2011 on Medicago sativa. When plants were fertilized with a low level of N (0.07 mM), the inoculation of the actinomycetes alone did not show any effect on plant growth. Meanwhile, when actinomycetes were co-inoculated with S. meliloti, nodulation and plant growth were significantly stimulated compared to plants inoculated with only S. meliloti. The analysis of nodulation kinetics of simultaneously or delayed co-inoculations suggests that the effect of the actinomycetes operates in early infection and nodule development counteracting the autoregulation of nodulation by the plant. Because the actinomycete effect was found in the symbiotic nitrogen-fixing state of the plant, we investigated the effects of the actinomycetes, in single inoculation or co-inoculation with S. meliloti, on plants grown under a high level of N (7 mM) that was inhibitory for nodulation by S. meliloti. The inoculation of the actinomycetes alone did not show any effect on plant growth although high N was available. Unexpectedly, the co-inoculation of actinomycetes with S. meliloti on plants grown with high N (7 mM) significantly stimulates nodulation, clearly counteracting the inhibition of nodulation by high N. These results corroborate that the interaction of rhizoactinomycetes would interfere with the autoregulation of nodulation in alfalfa mediated by high N, opening new research lines of potential agronomical applications.  相似文献   

18.
Bean (Phaseolus vulgaris L. var. Tacarigua) plants were grownin sterilized Leonard jars under controlled conditions. Beforesowing, 1 g of gamma irradiated peat containing the Rhizobiumtropici strain CIAT899 was placed at either 2 or 10 cm belowthe sand surface. Mechanical infection of bean rugose mosaicvirus (BRMV) was carried out in 3-d-old seedlings. Thus, theearly events of nodulation occurred before the arrival of virusparticles to roots. Rhizobium inoculation at 2 cm deep resultedin the formation of nodule clusters close to the crown, in contrastto the homogeneous nodulation along the roots observed in plantsinoculated with Rhizobium at a depth of 10 cm. The uniform arrangementof nodules on the roots enhanced the plant shoot biomass, althoughthe total nodule mass per plant did not differ between Rhizobiuminoculation treatments. Nodules located on deeper roots resultedin higher ureide concentrations in shoots and leaves and inreduced carbohydrate concentrations in leaves. In healthy plants,nodules formed on deeper roots had higher allantoinase activityand a greater carbohydrate concentration when compared to thatof nodules located close to the crown. Deeper nodules had ureideconcentrations similar to those of upper nodules, probably asa consequence of increased translocation of N-compounds to aerialorgans. A similar pattern of nodule formation and response toinoculum position was observed in BRMV-infected plants at allharvests. However, virus infection resulted in reduced totalnodule mass, shoot biomass, total leaf area and induced transitoryalterations in the ureide, -amino-N and carbohydrate concentrationin the different plant compartments. The effect of BRMV infectionon plant parameters was more evident during the vegetative stagesof growth. Nevertheless, the magnitude of the effect was alwaysmore pronounced in plants inoculated with Rhizobium at a depthof 2 cm compared to those Inoculated at 10 cm due to a greateractivity of deeper nodules despite virus infection. Deeper nodulesin BRMV-infected plants showed higher carbohydrate concentrationas well as higher allantoinase and uricase activity than thosedeveloped close to the crown, at all harvests. This observationwas further supported by ultrastructural analysis of virus-infectednodules, since virus replication took place in cells containingbacteroids of upper and lower nodules, but only in the interstitialcells of the latter. BRMV infection did not hinder the allantoinaseactivity and the chlorophyll content of uppermost mature leavesregardless of inoculum position. At the flowering and fruitingstages, healthy and BRMV-infected plants did not differ withregard to any of the tested parameters. Only inoculum positionhad an effect. The nearly normal functioning of the symbioticprocess at these stages of growth was attributed to the formationof a new generation of nodules in BRMV-infected plants subjectedto each of the Rhlzobium inoculation treatments. Key words: Bean rugose mosaic virus, symbiotic nitrogen fixation, bean, Rhizobium inoculum position, nodule ultrastructure  相似文献   

19.
In studies of Trifolium repens nitrogen nutrition, the controlof nutrient solution pH using dipolar buffers, was evaluatedin tube culture under sterile conditions. Five buffers; MES,ADA, ACES, BES and MOPS with pK2s (20 °C) of 6.15, 6.60,6.90, 7.15 and 7.20 respectively, at a concentration of 2.0mol m–3, were provided to inoculated Trifolium repensgrowing in nutrient solution containing 7.13 mol m–3 nitrogenas (NH4)2SO4. Initial pH of each solution was adjusted to theappropriate buffer pK2 Two buffers, ADA and ACES completelyinhibited plant growth. The remaining buffers had little effectin limiting pH change, although plant dry matter was higherand nodule numbers lower in the presence of these buffers. MESand MOPS were supplied to nutrient solutions with and without7.13 mol m–3 (NH4)2SO4, at concentrations ranging from0–12 mol m–3. MES at 9 mol m–3 and 12 molm–3 reduced growth of plants reliant on the symbiosisfor providing nitrogen. The provision of MES to plants providedwith NH4+ significantly increased plant yield and reduced nodulenumber at all concentrations. MOPS did not affect plant yieldor nodule number. The use of dipolar buffers in legume nitrogennutrition studies is considered in terms of buffering capacity,and the side effects on plant growth and symbiotic development. Key words: Ammonium, Dipolar buffer, Nitrogen nutrition, pH control, Symbiosis, Trifolium repens  相似文献   

20.
Discaria americana is a xerophytic shrub which lives in symbiosis with an actinomycete of the genus Frankia. The objective of this paper was to investigate the effects of high soil Zn2+ concentrations on growth and nodulation on the association Discaria americana–Frankia with the aim of determining if this association is suitable for improving contaminated soils. Two experiments were performed in 1 dm3 pots containing soil and different Zn additions, from 0 to 2,000 mg Zn2+ kg−1 dry soil, with or without N fertilization. Zn additions strongly delayed shoot and root growth, but once growth was initiated, the biomass production of the plants supplied with moderate Zn amounts did not differ from the control plants. Zn reduced the final nodule number, but not the total nodule biomass. At the end of the experiment only the highest Zn treatments showed a lower nodule weight than the control plants, while N addition completely inhibited nodulation. It is concluded than Zn reduces the number of Frankia infections, but once the actinomycete is inside the roots, nodules can continue growing according to plant demand for N, compensating the reduced nodule number with more biomass. On the other hand, there is a toxic effect of Zn itself on plants when present in very high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号