首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim  Worldwide, functional homogenization is now considered to be one of the most prominent forms of biotic impoverishment induced by current global changes. Yet this process has hardly been quantified on a large scale through simple indices, and the connection between landscape disturbance and functional homogenization has hardly been established. Here we test whether changes in land use and landscape fragmentation are associated with functional homogenization of bird communities at a national scale.
Location  France.
Methods  We estimated functional homogenization of a community as the average specialization of the species present in that community. We studied the spatial variation of this community specialization index (CSI) using 1028 replicates from the French Breeding Bird Survey along spatial gradients of landscape fragmentation and recent landscape disturbance, measured independently, and accounting for spatial autocorrelation.
Results  The CSI was very sensitive to both measures of environmental degradation: on average, 23% of the difference in the CSI values between two sample sites was attributed to the difference in fragmentation and the disturbance between sites. This negative correlation between CSI and sources of landscape degradation was consistent over various habitats and biogeographical zones.
Main conclusions  We demonstrate that the functional homogenization of bird communities is strongly positively correlated to landscape disturbance and fragmentation. We suggest that the CSI is particularly effective for measuring functional homogenization on both local and global scales for any sort of organism and with abundance or presence–absence data.  相似文献   

2.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

3.
Co‐occurring species are rarely considered as a factor influencing habitat selection. However, niche theory predicts that sharing resources, predators, and other interspecific interactions can limit the environmental conditions under which a species may exist. How does the spatial distribution of one species affect that of another within shared landscapes? We tested whether sympatric marten Martes americana and fishers M. pennanti in a mountain landscape in Alberta, Canada exhibit local‐scale spatial segregation, beyond differential habitat selection. We modelled marten and fisher distribution in relation to remotely‐sensed habitat data and species co‐occurrence, using generalized linear models and information‐theoretic model selection. Marten and fishers selected different habitat types and showed different responses to habitat fragmentation. Even after accounting for these differences, the absence of one species significantly explained the occurrence of the other. We conclude that the spatial distribution of marten and fishers influences habitat selection by each other at landscape scales, and hypothesize that this pattern may result from competition in a spatially heterogeneous environment. Species‐habitat models that consider only resources may fail to capture key predictors of species’ occurrence. Reliable prediction and inference requires that ecologists expand from landscapes to also include species‐scapes: a spatial plane of species interactions that combines with resources to drive species’ distributions.  相似文献   

4.
5.
Both avian abundance and species richness decline in response to habitat loss and fragmentation. Studying variation in bird song structure across modified landscapes can provide insights into the effects of habitat alterations on coherence of social interactions within populations. Here, we tested whether fragmentation or change of habitat quality within box‐ironbark forest of central Victoria impacted cultural connectivity and song characteristics in fuscous honeyeater, a declining common Australian bird. First, we tested whether geographic distance and/or spatially‐explicit landscape connectivity models can explain patterns of song similarity across fragmented landscapes. We found no evidence that distance or habitat fragmentation impacts the nature and transmission of fuscous honeyeater song, and concluded that acoustic connectivity at the scale of our study is high. Second, we tested whether variation in habitat quality explains variation in song characteristics. In accordance with acoustic adaptation to habitat structure, birds sang longer songs in sites with more large trees and produced longer common song elements in sites with greater tree height. However, the acoustic adaptation hypothesis cannot explain the finding that in less‐disturbed landscapes with higher tree‐cover birds sang songs (and song elements) with higher maximum frequency and wider frequency bandwidth. We also found that birds sing longer and more variable songs of wider frequency bandwidth in less disturbed sites with a greater number of large mature trees, which may represent better feeding resources. Our study suggests that changes in song structure with habitat degradation could signal disturbed population processess, such as changes in the acoustic communication among resident birds.  相似文献   

6.
Animal‐mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape‐scale disturbance results in two often inter‐related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of ‘fragmentation’ owes much to artifacts of the sampling regimes adopted, particularly (1) incorrectly separating fragmentation from habitat loss, and (2) mis‐matches in spatial scale between landscapes studied and the ecological processes of interest. The field of landscape pollination ecology could be greatly advanced through the consideration and quantification of the matrix, landscape functional connectivity, and pollinator movement behaviour in response to these elements. Studies designed to disentangle the independent effects of habitat loss and fragmentation are essential for gaining insight into landscape‐mediated pollination declines, implementing effective conservation measures, and optimizing ecosystem services in complex landscapes.  相似文献   

7.
Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal‐related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large‐scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation.  相似文献   

8.
Abstract.  1. Habitat loss and fragmentation are the main causes of changes in the distribution and abundance of organisms, and are usually considered to negatively affect the abundance and species richness of organisms in a landscape. Nevertheless, habitat loss and fragmentation have often been confused, and the reported negative effects may only be the result of habitat loss alone, with habitat fragmentation having nil or even positive effects on abundance and species richness.
2. Manipulated alfalfa micro-landscapes and coccinellids (Coleoptera: Coccinellidae) are used to test the effects habitat loss (0% or 84%), fragmentation (4 or 16 fragments), and isolation (2 or 6 m between fragments) on the density, species richness, and distribution of native and exotic species of coccinellids.
3. Generally, when considering only the individuals in the remaining fragments, habitat loss had variable effects while habitat fragmentation had a positive effect on the density of two species of coccinellids and on species richness, but did not affect two other species. Isolation usually had no effect. When individuals in the whole landscape were considered, negative effects of habitat loss became apparent for most species, but the positive effects of fragmentation remained only for one species.
4. Native and exotic species of coccinellids did not segregate in the different landscapes, and strong positive associations were found most often in landscapes with higher fragmentation and isolation.
5. The opposing effects of habitat loss and fragmentation may result in a nil global effect; therefore it is important to separate their effects when studying populations in fragmented landscapes.  相似文献   

9.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

10.
The effects of habitat fragmentation on different taxa and ecosystems are subject to intense debate, and disentangling them is of utmost importance to support conservation and management strategies. We evaluated the importance of landscape composition and configuration, and spatial heterogeneity to explain α- and β-diversity of mammals across a gradient of percent woody cover and land use diversity. We expected species richness to be positively related to all predictive variables, with the strongest relationship with landscape composition and configuration, and spatial heterogeneity respectively. We also expected landscape to influence β-diversity in the same order of importance expected for species richness, with a stronger influence on nestedness due to deterministic loss of species more sensitive to habitat disturbance. We analyzed landscape structure using: (a) landscape metrics based on thematic maps and (b) image texture of a vegetation index. We compared a set of univariate explanatory models of species richness using AIC, and evaluated how dissimilarities in landscape composition and configuration and spatial heterogeneity affect β-diversity components using a Multiple Regression on distance Matrix. Contrary with our expectations, landscape configuration was the main driver of species richness, followed by spatial heterogeneity and last by landscape composition. Nestedness was explained, in order of importance, by spatial heterogeneity, landscape configuration, and landscape composition. Although conservation policies tend to focus mainly on habitat amount, we advocate that landscape management must include strategies to preserve and improve habitat quality and complexity in natural patches and the surrounding matrix, enabling landscapes to harbor high species diversity.  相似文献   

11.
Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species‐specific population structure are rare. Here, we used a comparative approach on eight bird species, co‐occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology.  相似文献   

12.
Human landscape modification has led to habitat fragmentation for many species. Habitat fragmentation, leading to isolation, decrease in patch size and increased edge effect, is observed in fen ecosystems that comprise many endangered plant species. However, until now it has remained unclear whether habitat fragmentation per se has a significant additional negative effect on plant species persistence, besides habitat loss and degradation. We investigated the relative effect of isolation, habitat size, and habitat edge compared to the effect of habitat degradation by including both ‘fragmentation variables’ and abiotic variables in best subsets logistic regression analyses for six fen-plant species. For all but one species, besides abiotic variables one or more variables related to fragmentation were included in the regression model. For Carex lasiocarpa, isolation was the most important factor limiting species distribution, while for Juncus subnodulosus and Menyanthes trifoliata, isolation was the second most important factor. The effect of habitat size differed among species and an increasing edge had a negative effect on the occurrence of Carex lasiocarpa and Pedicularis palustris. Our results clearly show that even if abiotic conditions are suitable for certain species, isolation of habitat patches and an increased habitat edge caused by habitat fragmentation affect negatively the viability of characteristic fen plant species. Therefore, it is important not only to improve habitat quality but also to consider spatial characteristics of the habitat of target species when deciding on plant conservation strategies in intensively used landscapes, such as fen areas in Western Europe and North America.  相似文献   

13.
It is important to understand the relative effects of landscape habitat loss, habitat fragmentation, and matrix quality on biodiversity, so that potential management options can be appropriately ranked. However, their effects and relative importance may change with the size of the landscape considered because the multiple (and potentially conflicting) ecological processes that are influenced by landscape structure occur at different spatial scales (e.g. dispersal, predation, foraging). We estimated the relative effects of habitat loss, habitat fragmentation, and matrix quality (measured as the amount of forest, the proportion of forest area contained in large core forests, and the density of roads respectively) on fragmentation‐sensitive forest birds in southern Ontario, Canada using a range of landscape sizes (0.8–310 km2). We used three complementary statistical approaches to estimate relative effects of these correlated landscape factors – 1) multiple regression, 2) information theoretic (AIC) estimates of the most parsimonious model, and 3) multi‐model inference to average effects across all supported models. We controlled for spatial autocorrelation, local habitat, roadside sampling bias, time of day, season, habitat heterogeneity, and the interaction between the effects of habitat amount and fragmentation. We found that relative effects of habitat amount and fragmentation were scale dependent; habitat amount had a consistently positive effect that was consistent over more than two orders of magnitude in landscape area (~1–300 km2). In contrast, the effects of habitat fragmentation depended on the size of the landscape considered. Indeed, for veery Catharus fuscescens, habitat fragmentation had positive effects at one scale and negative effects at another. The effects of matrix quality were generally weak and changed little with scale. For the number of fragmentation sensitive species and the presence of veery, habitat amount was most important in large landscapes and habitat fragmentation in small landscapes but for the presence of ovenbird Seiurus aurocapilla, habitat amount was most important at all scales.  相似文献   

14.
The effects of habitat fragmentation and their implications for biodiversity is a central issue in conservation biology which still lacks an overall comprehension. There is not yet a clear consensus on how to quantify fragmentation even though it is quite common to couple the effects of habitat loss with habitat fragmentation on biodiversity. Here we address the spatial patterns of species distribution in fragmented landscapes, assuming a neutral community model. To build up the fragmented landscapes, we employ the fractional Brownian motion approach, which in turn permits us to tune the amount of habitat loss and degree of clumping of the landscape independently. The coupling between the neutral community model, here simulated by means of the coalescent method, and fractal neutral landscape models enables us to address how the species–area relationship changes as the spatial patterns of a landscape is varied. The species–area relationship is one of the most fundamental laws in ecology, considered as a central tool in conservation biology, and is used to predict species loss following habitat disturbances. Our simulation results indicate that the level of clumping has a major role in shaping the species–area relationship. For instance, more compact landscapes are more sensitive to the effects of habitat loss and speciation rate. Besides, the level of clumping determines the existence and extension of the power-law regime which is expected to hold at intermediate scales. The distributions of species abundance are strongly influenced by the degree of fragmentation. We also show that the first and second commonest species have approximately self-similar spatial distributions across scales, with the fractal dimensions of the support of the first and second commonest species being very robust to changes in the spatial patterns of the landscape.  相似文献   

15.
The habitat amount hypothesis (HAH) predicts that species richness in a habitat site increases with the amount of habitat in the ‘local landscape’ defined by an appropriate distance around the site, with no distinct effects of the size of the habitat patch in which the site is located. It has been stated that a consequence of the HAH, if supported, would be that it is unnecessary to consider habitat configuration to predict or manage biodiversity patterns, and that conservation strategies should focus on habitat amount regardless of fragmentation. Here, I assume that the HAH holds and apply the HAH predictions to all habitat sites over entire landscapes that have the same amount of habitat but differ in habitat configuration. By doing so, I show that the HAH actually implies clearly negative effects of habitat fragmentation, and of other spatial configuration changes, on species richness in all or many of the habitat sites in the landscape, and that these habitat configuration effects are distinct from those of habitat amount in the landscape. I further show that, contrary to current interpretations, the HAH is compatible with a steeper slope of the species–area relationship for fragmented than for continuous habitat, and with higher species richness for a single large patch than for several small patches with the same total area (SLOSS). This suggests the need to revise the ways in which the HAH has been interpreted and can be actually tested. The misinterpretation of the HAH has arisen from confounding and overlooking the differences in the spatial scales involved: the individual habitat site at which the HAH gives predictions, the local landscape around an individual site and the landscapes or regions (with multiple habitat sites and different local landscapes) that need to be analysed and managed. The HAH has been erroneously viewed as negating or diminishing the relevance of fragmentation effects, while it actually supports the importance of habitat configuration for biodiversity. I conclude that, even in the cases where the HAH holds, habitat fragmentation and configuration are important for understanding and managing species distributions in the landscape.  相似文献   

16.
《Ecography》2002,25(2):161-172
Fire is a key mechanism creating and maintaining habitat heterogeneity in Mediterranean landscapes by turning continuous woody landscapes into mosaics of forests and shrublands. Due to the long historical role of fires in the Mediterranean, we hypothesised a moderate negative effect of this type of perturbation on forest bird distribution at a landscape level. We conducted point bird censuses in Aleppo pine forest patches surrounded by burnt shrublands and studied the relationships between three ecological groups of bird species (forest canopy species, forest understorey species, and ubiquitous species) and the features of local habitat, whole patch and surrounding landscape. We used a multi-scale approach to assess the effects of landscape variables at increasing spatial scales on point bird richness. Regarding local habitat components, canopy species were positively associated with tall pines while understorey species with the cover of shrubs and plants from holm-oak forests. Forest birds were positively related to patch size and irregular forest shapes, that is, with high perimeter/size ratios. Thus, these species did not seem to perceive edges as low quality but rather favourable microhabitats. We did not detect any negative effect of isolation or cover of woodlands in the landscape on the presence of forest species after local habitat factors had been accounted for. Finally, only local habitat factors entered the model for ubiquitous species. We suggest that mosaic-like landscapes shaped by fires in the Mediterranean basin are not strongly associated with negative effects fragmentation on forest birds other than those related with habitat loss.  相似文献   

17.
Understanding factors affecting the distribution of the African elephant is important for its conservation in increasingly human‐dominated savannah landscapes. However, understanding how landscape fragmentation and vegetation productivity affect elephant habitat utilization remains poorly understood. In this study, we tested whether landscape fragmentation and vegetation productivity explain elephant habitat utilization in the Amboseli ecosystem in Kenya. We used GPS (Global Positioning System) telemetry data from five elephants to quantify elephant habitat utilization. Habitat utilization was determined by calculating the time elephants spent within a unit area. We then used generalized additive models (GAMs) to model the relationship between time density and landscape fragmentation, as well as vegetation productivity. Results show that landscape fragmentation and vegetation productivity significantly (P < 0.05) explain elephant habitat utilization. A significant (P < 0.05) unimodal relationship between vegetation productivity and habitat utilization was observed. Results suggest that elephants spend much of their time in less fragmented landscapes of intermediate productivity.  相似文献   

18.
Population connectivity is mediated by the movement of organisms or propagules through landscapes. However, little is known about how variation in the pattern of landscape mosaics affects the detectability of landscape genetic relationships. The goal of this paper is to explore the impacts of limiting factors on landscape genetic processes using simulation modeling. We used spatially explicit, individual-based simulation modeling to quantify the effects of habitat area, fragmentation and the contrast in resistance between habitat and non-habitat on the apparent strength and statistical detectability of landscape genetic relationships. We found that landscape genetic effects are often not detectable when habitat is highly connected. In such situations landscape structure does not limit gene flow. We also found that contrast in resistance values between habitat and non-habitat interacts with habitat extensiveness and fragmentation to affect detectability of landscape genetic relationships. Thus, the influence of landscape features critical to providing connectivity may not be detectable if gene flow is not limited by spatial patterns or resistance contrast of these features. We developed regression equations that reliably predict whether or not isolation by resistance will be detected independently of isolation by distance as a function of habitat fragmentation and contrast in resistance between habitat and non-habitat.  相似文献   

19.
As landscapes change, mobility patterns of species may alter. Different mechanistic scenarios may, however, lead to particular patterns. Here, we tested conflicting predictions from two hypotheses on butterfly movements in relation to habitat fragmentation. According to the resource distribution hypothesis, butterflies in more fragmented landscapes would have higher levels of mobility as resources are more scattered. However, these butterflies could have lower levels of mobility as they experience 'hard' habitat boundaries more frequently (i.e. higher crossing costs) compared with butterflies in landscapes with continuous habitat; i.e. the behaviour-at-boundaries hypothesis. We studied movements, habitat boundary crossing and habitat preference of laboratory-reared individuals of Pararge aegeria that originated from woodland and agricultural landscapes, by using an experimental landscape as a common environment (outdoor cages) to test the predictions, taking into account sexual differences and weather. Woodland butterflies covered longer distances, were more prone to cross open-shade boundaries, travelled more frequently between woodland parts of the cages and were more at flight than agricultural butterflies. Our results support the behaviour-at-boundaries hypothesis, with 'softer' boundaries for woodland landscapes. Because the butterflies were reared in a common environment, the observed behavioural differences rely on heritable variation between populations from woodland and agricultural landscapes.  相似文献   

20.
Habitat quality is one of the important factors determining population dynamics and persistence, yet few studies have examined the effects of spatial heterogeneity in within-patch habitat quality. In this paper, we use a spatially explicit agent-based model to investigate how habitat fragmentation and spatial pattern of within-patch habitat quality affect population dynamics and long-term persistence. We simulate three levels of habitat fragmentation (ranges from continuous to highly fragmented) and three types of spatial patterns in habitat quality within patches (i.e., negatively autocorrelated, randomly distributed, and positively autocorrelated). Hypothetical species differ in their niche specialization. The results demonstrate explicitly that the spatial pattern of within-patch habitat quality plays an important role in modulating the effects of habitat fragmentation on populations. Populations become less variable in size, and experience lower probability of extinction in landscapes with positively autocorrelated within-patch habitat quality. Specifically, specialized species are more vulnerable to habitat fragmentation, but this vulnerability is greatly mitigated by positively autocorrelated habitat quality within patches, in other words, exhibiting higher resistance to habitat fragmentation. The findings of this study suggest that managing habitat quality in existing habitat remnants is important to preserve species in habitats undergoing fragmentation, particularly for those with specialized habitat requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号