首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neoparamoeba pemaquidensis, the etiological agent of amoebic gill disease, has shown surprising sequence variability among different copies of the 18S ribosomal RNA gene within an isolate. This intra-genomic microheterogeneity was confirmed and extended to an analysis of the internal transcribed spacer (ITS) region. High levels of intra-genomic nucleotide diversity (Pi=0.0201-0.0313) were found among sequenced ITS regions from individual host amoeba isolates. In contrast, the ITS region of its endosymbiont revealed significantly lower levels of intra-genomic nucleotide diversity (Pi=0.0028-0.0056) compared with the host N. pemaquidensis. Phylogenetic and ParaFit coevolution analyses involving N. pemaquidensis isolates and their respective endosymbionts confirmed a significant coevolutionary relationship between the two protists. The observation of non-shared microheterogeneity and coevolution emphasizes the complexity of the interactions between N. pemaquidensis and its obligate endosymbiont.  相似文献   

2.
Some of the species from the genus Neoparamoeba, for example N. perurans have been shown to be pathogenic to aquatic animals and thus have economic significance. They all contain endosymbiont, Perkinsela amoebae like organisms (PLOs). In this study we investigated phylogenetic ambiguities within the Neoparamoeba taxonomy and phylogenetic congruence between PLOs and their host Neoparamoeba to confirm the existence of a single ancient infection/colonisation that led to cospeciation between all PLOs and their host Neoparamoeba. DNA was extracted and rRNA genes from host amoeba and endosymbiont were amplified using PCR. Uncertainties in the Neoparamoeba phylogeny were initially resolved by a secondary phylogenetic marker, the internal transcribed spacer 2 (ITS2). The secondary structure of ITS2 was reconstructed for Neoparamoeba. The ITS2 was phylogenetically informative, separating N. pemaquidensis and N. aestuarina into distinct monophyletic clades and designating N. perurans as the most phylogenetically divergent Neoparamoeba species. The new phylogenetic data were used to verify the tree topologies used in cophylogenetic analyses that revealed strict phylogenetic congruence between endosymbiotic PLOs with their host Neoparamoeba. Strict congruence in the phylogeny of all PLOs and their host Neoparamoeba was demonstrated implying that PLOs are transmitted vertically from parent to daughter cell.  相似文献   

3.
Neoparamoeba pemaquidensis is a parasomal amoeboid protozoan identified as the agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar reared in sea-pens in Tasmania, Australia, and coho salmon Oncorhynchus kisutch farmed on the west coast of the USA. Outbreaks of AGD caused by immunologically cross-reactive paramoebae have also been reported in sea-farmed salmonids in several other countries. Complete 18S rDNA sequences were determined for respective paramoebae isolated from infected gills of salmon from Tasmania and Ireland, and N. pemaquidensis isolates from the USA and UK, including representative free-living isolates. Alignments over 2110 bp revealed 98.1 to 99.0% sequence similarities among isolates, confirming that paramoebae implicated in AGD in geographically distant countries were homologous and belonged to the same species, N. pemaquidensis. The results supported previous findings that N. pemaquidensis exists as a widely distributed, amphizoic marine protozoan. Partial 18S rDNA sequences were obtained for the ultrastructurally similar species, N. aestuarina, and for the morphologically similar but non-parasomal amoeba Pseudoparamoeba pagei. N. aestuarina had 95.3 to 95.7% sequence similarities with N. pemaquidensis strains, which distinguished 2 closely related but separate species. Neoparamoeba spp. were not analogous to P. pagei or to other marine Gymnamoebia. We designed 4 oligonucleotide primers based on elucidated 18S rDNA sequences and applied them to single-step and nested 2-step PCR protocols developed to identify N. pemaquidensis to the exclusion of apparently closely related and non-related protistan taxa. Nested PCR was able to detect the AGD parasite from non-purified, culture-enriched net microfouling samples from Atlantic salmon sea-pens in Tasmania, and confirmed that N. pemaquidensis was also responsible for AGD in chinook salmon O. tshawytscha in New Zealand. Our sequence and PCR analyses have now shown that AGD affecting 3 different salmonid species farmed in 4 countries are associated with N. pemaquidensis. A species-specific diagnostic PCR provides for the first time, a highly specific detection and identification assay for N. pemaquidensis that will facilitate future ecological and epidemiological studies of AGD.  相似文献   

4.
The molecular phylogeny of Neoparamoeba spp. based on SSU rDNA was updated by including new sequences of strains isolated from an invertebrate and an alga. In total, 59 sequences of strains representating N. pemaquidensis, N. branchiphila, N. aestuarina and N. perurans were analysed. Sequences of SSU rDNA of eukaryotic endosymbionts (Perkinsela amoebae-like organisms) were prepared from 34 samples of genomic DNA of strain-representatives of N. pemaquidensis, N. branchiphila and N. aestuarina. Comparison of phylograms reconstructed from corresponding SSU rDNA sequences of host amoebae and their symbionts revealed a high level of congruence, which argues very strongly for coevolution of these two eukaryotic organisms.  相似文献   

5.
Small subunit ribosomal RNA gene sequences were determined for 5 amoeba strains of the genus Neoparamoeba Page, 1987 that were isolated from gills of Scophthalmus maximus (Linnaeus, 1758). Phylogenetic analyses revealed that 2 of 5 morphologically indistinguishable strains clustered with 6 strains identified previously as N. pemaquidensis (Page, 1970). Three strains branched as a clade separated from N. pemaquidenis and N. aestuarina (Page, 1970) clades. Our analyses suggest that these 3 strains could be representatives of an independent species. In a more comprehensive eukaryotic tree, strains belonging to Neoparamoeba spp. formed a monophyletic group with a sister-group relationship to Vannella anglica Page, 1980. They did not cluster with Gymnamoebae of the families Hartmannellidae, Flabellulidae, Leptomyxidae or Amoebidae presently available in GenBank.  相似文献   

6.
Different mechanisms such as selection or genetic drift permitted e.g. by geographical isolation can lead to differentiation of populations and could cause subsequent speciation. The two subspecies of Poecilimon veluchianus, a bushcricket endemic to central Greece, show a parapatric distribution and are partially reproductively isolated. Therefore, P. veluchianus is suitable to investigate an ongoing speciation process. We based our analysis on sequences of the internal transcribed spacer (ITS) and the mitochondrial control region (CR). The population genetic analysis based on the nuclear marker ITS revealed a barrier to gene flow within the range of Poecilimon veluchianus, which corresponds well to the described subspecies. In contrast to the results based on the nuclear ITS marker, the mitochondrial CR marker does not clearly support the separation into two subspecies with restricted gene flow and a clear contact zone. Furthermore, we could identify isolation by distance (IBD) as one important mechanism responsible for the observed genetic structure (based on the ITS marker). The population genetic analysis based on the nuclear marker ITS also suggests the existence of hybrids in the wild. Furthermore, the simultaneous lack of strong prezygotic barriers and the presence of postzygotic mating barriers, observed in previous laboratory experiments, suggest that a secondary contact after an allopatric phase is more likely than parapatric speciation.  相似文献   

7.
Different molecular techniques were tested to determine which was the most effective in the identification of Saccharomyces cerevisiae strains. In particular, polymerase chain reaction--restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer (ITS) regions and the nontranscribed spacer 2 (NTS2) region, sequencing of the D1/D2 domain, and electrophoretic karyotyping were applied to 123 yeast strains isolated from different sourdoughs and tentatively attributed to the species S. cerevisiae. All of the strains tested showed an identical PCR-RFLP pattern for the ITS regions, an identical nucleotide sequence of the D1/D2 domain, and the typical electrophoretic karyo type of S. cerevisiae. In contrast, 14 out of the 123 strains tested showed some polymorphism with BanI restriction analysis of the NTS2 region. Our results indicate that while the sequencing of the D1/D2 domain, the PCR-RFLP analysis of the ITS regions, and the electrophoretic karyotype can be employed successfully to identify S. cerevisiae strains, PCR-RFLP analysis of the NTS2 region does not allow a consistent and accurate grouping for S. cerevisiae strains. The fact that the NTS2 region of a small number of strains (8.78% of the total strains tested) is different from that of the other S. cerevisiae strains confirms that molecular methods should always be tested on a great number of strains.  相似文献   

8.
ABSTRACT: We characterised 9 strains selected from primary isolates referable to Paramoeba/Neoparamoeba spp. Based on ultrastructural study, 5 strains isolated from fish (amoebic gill disease [AGD]-affected Atlantic salmon and dead southern bluefin tuna), 1 strain from netting of a floating sea cage and 3 strains isolated from invertebrates (sea urchins and crab) were assigned to the genus Neoparamoeba Page, 1987. Phylogenetic analyses based on SSU rDNA sequences revealed affiliations of newly introduced and previously analysed Neoparamoeba strains. Three strains from the invertebrates and 2 out of 3 strains from gills of southern bluefin tunas were members of the N. branchiphila clade, while the remaining, fish-isolated strains, as well as the fish cage strain, clustered within the clade of N. pemaquidensis. These findings and previous reports point to the possibility that N. pemaquidensis and N. branchiphila can affect both fish and invertebrates. A new potential fish host, southern bluefin tuna, was included in the list of farmed fish endangered by N. branchiphila. The sequence of P. eilhardi (Culture Collection of Algae and Protozoa [CCAP] strain 1560/2) appeared in all analyses among sequences of strain representatives of Neoparamoeba species, in a position well supported by bootstrap value, Bremer index and Bayesian posterior probability. Our research shows that isolation of additional strains from invertebrates and further analyses of relations between molecular data and morphological characters of the genera Paramoeba and Neoparamoeba are required. This complexity needs to be considered when attempting to define molecular markers for identification of Paramoeba/Neoparamoeba species in tissues of fish and invertebrates.  相似文献   

9.
Previously we described a new member of the Neoparamoeba genus, N. perurans, and showed that it is an agent of amoebic gill disease (AGD) of Atlantic salmon Salmo salar cultured in southeast Tasmania, Australia. Given the broad distribution of cases of AGD, we were interested in extending our studies to epizootics in farmed fish from other sites around the world. Oligonucleotide probes that hybridise with the 18S rRNA of N. perurans, N. branchiphila or N. pemaquidensis were used to examine archival samples of AGD in Tasmania as well as samples obtained from 4 host fish species cultured across 6 countries. In archival samples, N. perurans was the only detectable amoeba, confirming that it has been the predominant aetiological agent of AGD in Tasmania since epizootics were first reported. N. perurans was also the exclusive agent of AGD in 4 host species across 6 countries. Together, these data show that N. perurans is a cosmopolitan agent of AGD and, therefore, of significance to the global mariculture industry.  相似文献   

10.
A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained from unknown strains in both chromatogram and FASTA format.  相似文献   

11.
Internal transcribed spacers (ITS) and the 5.8S ribosomal gene of 21 Naegleria fowleri strains and eight other species including Naegleria gruberi were sequenced. The results showed that this region can help differentiate between and within species. The phylogeny of Naegleria spp. deduced from the ITS and the 5.8S gene produced four major lineages, fowleri-lovaniensis, galeacystis-italica-clarki-gruberi-australiensis, andersoni-jamiesoni, and pussardi, that fit perfectly with those inferred from the 18S rRNA gene analysis. The N. gruberi isolate, NG260, was closely related to Naegleria pussardi. The other N. gruberi isolates branched together with Naegleria australiensis in another lineage. The ITS and 5.8S results for N. fowleri were congruent with those previously deduced by RAPD analysis. The phylogenetic analysis inferred from ITS and RAPD data revealed two major groups. The French Cattenom and Chooz and South Pacific strains constituted the first group. The second group encompassed the strains corresponding to the Euro-American and Widespread RAPD variants and shared the same substitution in the 5.8S gene. In addition, it was possible to define species specific primers in ITS regions to rapidly identify N. fowleri.  相似文献   

12.
Genetic relationships of 24 phenotypically different strains isolated from sorghum beer in West Africa and the type cultures of the Saccharomyces sensu stricto species were investigated by universally primed polymerase chain reaction (PCR) analysis, microsatellite fingerprinting and PCR-restriction fragment length polymorphism (RFLP) of the ribosomal internal transcribed spacers. The results demonstrate that internal transcribed spacer (ITS) PCR-RFLP analysis with the endonucleases HaeIII, HpaII, ScrFI and TaqI is useful for discriminating S. cerevisiae, S. kudriavzevii, S. mikatae from one another and from the S. bayanus/S. pastorianus and S. cariocanus/S. paradoxus pairs. The sorghum beer strains exhibited the same restriction patterns as the type culture of S. cerevisiae CBS 1171. PCR profiles generated with the microsatellite primer (GTG)(5) and the universal primer N21 were almost identical for all isolates and strain CBS 1171. Despite phenotypic peculiarities, the strains involved in sorghum beer production in Ghana and Burkina Faso belong to S. cerevisiae. However, based on sequencing of the rDNA ITS1 region and Southern hybridisation analysis, these strains represent a divergent population of S. cerevisiae.  相似文献   

13.
宋维娟  程池 《微生物学通报》2009,36(6):0918-0922
选取中国工业微生物菌种保藏管理中心(CICC)保藏的假丝酵母属的7个种30株菌, 对其rDNA的ITS1区及ITS2区进行了PCR-SSCP指纹图谱分析, 结果表明在假丝酵母属种水平的区分鉴定中, ITS1区与ITS2区的PCR-SSCP图谱均能对本研究所选7个种的菌株进行显著区分, 比较两个区段的PCR-SSCP图谱及鉴别效果, 发现ITS2区的应用效果要优于ITS1区。  相似文献   

14.
Polynucleobacter necessarius subsp. asymbioticus strain QLW-P1DMWA-1(T) is a planktonic freshwater bacterium affiliated with the family Burkholderiaceae (class Betaproteobacteria). This strain is of interest because it represents a subspecies with cosmopolitan and ubiquitous distribution in standing freshwater systems. The 16S-23S ITS genotype represented by the sequenced strain comprised on average more than 10% of bacterioplankton in its home habitat. While all strains of the subspecies P. necessarius asymbioticus are free-living freshwater bacteria, strains belonging to the only other subspecies, P. necessarius subsp. necessarius are obligate endosymbionts of the ciliate Euplotes aediculatus. The two subspecies of P. necessarius are the instances of two closely related subspecies that differ in their lifestyle (free-living vs. obligate endosymbiont), and they are the only members of the genus Polynucleobacter with completely sequenced genomes. Here we describe the features of P. necessarius subsp. asymbioticus, together with the complete genome sequence and annotation. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes is the first completed genome sequence of the genus Polynucleobacter to be published and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006.  相似文献   

15.
Small differences have been reported in the internal transcribed spacer 1 (ITS1) region among strains of Neospora caninum. We compared ITS1 sequences among 6 N. caninum strains analyzed in our laboratory, including 2 strains that have not been examined previously (NC-Illinois and NC-Bahia). Five sequences showed 100% similarity and also were identical to 7 of 11 sequences that were previously reported by others. In contrast, initial attempts to sequence the ITS1 of NC-Bahia generated 12 nucleotide differences compared with the other 5 strains, and several ambiguous bases. However, the single band containing the ITS1 region, as observed after electrophoresis on a 2% agarose gel, became divided into 2 distinct bands when reanalyzed using 5 or 10% polyacrylamide gel electrophoresis (PAGE), and the ITS1 within these separate bands were sequenced without ambiguity. The other 5 N. caninum strains were also reexamined using PAGE, and in each strain 2 distinct bands were discovered. In comparison, 2 strains of Toxoplasma gondii continued to show only 1 band when examined using PAGE. The ITS1 sequence of NC-Bahia, from Brazil, differs in several base pairs from those of North American and European strains of N. caninum. Intrastrain variation of the ITS1 region appears to be common in N. caninum, in contrast to T. gondii.  相似文献   

16.
We report here on a comparative evaluation of PCR-restriction fragment length polymorphism (PCR-RFLP) and pulsed-field gel electrophoresis (PFGE) assays, and ascertain the clonal relationship between 13 enterohemorrhagic Escherichia coli O157 : H7 strains isolated from fecal samples collected from three cows over a period of 2 months. PCR-RFLP analysis was carried out with either BglI or EcoRV digested LA-PCR amplicons, generated by targeting region V of the Stx-phage. While PCR-RFLP analysis placed these 13 strains into a single clonal type, pulsotyping analysis, as reported earlier, grouped these strains into four different PFGE subtypes of which three were closely related, while the other appeared to be different. The comparative analysis was extended further using two clonally different wild-type (3-0 and Sakai 215) strains and 17 derivative strains which had passed through an animal's gastrointestinal tract. The PCR-RFLP assay, which was not only able to differentiate the wild-type strains, but also placed the passaged derivative strains into their respective parental group, although PFGE patterns of the same set of strains resulted from different PFGE subtypes. These data indicate that PCR-RFLP is the more reliable and useful assay for a molecular epidemiological survey of enterohemorrhagic E. coli strains.  相似文献   

17.
Ganoderma lucidum is one of the most important medicinal materials and plant pathogens. Because of its specific interhybridization, the genetic background, however, is relatively unclear. It made identification of Ganoderma strains, especially closely related strains difficulty. Amplified fragment length polymorphism (AFLP) using 14 primer combinations and internal transcribed spacer (ITS) PCR-RFLP were used in a comparative study which was designed to investigate the closely related Ganoderma strains genetic relations at molecular level. The analysis of 37 Ganoderma strains showed there were 177 polymorphic AFLP markers and 12 ITS PCR-RFLP markers, and all accessions could be uniquely identified. Among the Ganoderma accessions, similarity coefficients ranged from 0.07692 to 0.99194 in AFLP. The Ganoderma strains formed a tight cluster in nine groups in AFLP whereas seven groups in ITS PCR-RFLP. The cluster analysis revealed that the taxonomical system of subgenus Ganoderma is composed of Sect. Ganoderma and Sect. Phaeonema, and the strain 22 should be a variant form of strain 21. All methods delineated the Ganoderma strains from the different regions seeming to show a greater level of genetic diversity. It indicated that the genotype study at molecular level is a useful complement method to the current classification system of Ganoderma strains based on morphological traits. The congruency of the experiments was analyzed using the biostatistical software DPS V3.01.  相似文献   

18.
Amoebic gill disease (AGD) affects the culture of Atlantic salmon Salmo salar in the southeast of Tasmania. The disease is characterised by the presence of epizoic Neoparamoeba spp. in association with hyperplastic gill tissue. Gill-associated amoebae trophozoites were positively selected by plastic adherence for culture in seawater, where they proliferated using heat-killed E. coli as a nutrient source. One isolate of gill-harvested amoebae designated NP251002 was morphologically consistent to N. pemaquidensis under light, fluorescence and transmission electron microscopy. Rabbit anti-N. pemaquidensis antiserum bound to NP251002, and N. pemaquidensis small subunit (SSU) ribosomal DNA (18S rDNA) was detected in NP251002 genomic DNA preparations using PCR. A high degree of similarity in the alignment of the NP251002 18S rDNA PCR amplicon sequence with reference isolates of N. pemaquidensis suggested conspecificity. While short-term culture (72 h) of gill-harvested amoebae does not affect the capacity of amoebae to induce AGD, Atlantic salmon challenged with NP251002 after the trophozoites had been 34 and 98 d in culture exhibited neither gross nor histological evidence of AGD. It is not known if NP251002 were avirulent at the time of isolation, had down-regulated putative virulence factors or virulence was inhibited by the culture conditions. Therefore, the time in culture could be a limiting factor in maintaining virulence using the culture technique described here.  相似文献   

19.
Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection.  相似文献   

20.
The specific identification of Lymnaeid snails is based on a comparison of morphological characters of the shell, radula, renal and reproductive organs. However, the identification is complicated by dissection process, intra and interspecific similarity and variability of morphological characters. In the present study, polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) techniques targeted to the first and second internal transcribed spacers (ITS1 and ITS2) rDNA and to the mitochondrial 16S ribosomal gene (16S rDNAmt) were used to differentiate the species Lymnaea columella, L. viatrix, and L. diaphana from some localities of Brazil, Argentina, and Uruguay as well as to verify whether the molecular results corroborates the classical morphological method.PCR-RFLP analysis of the ITS1, ITS2, and 16S using 12 restriction enzymes revealed characteristic patterns for L. columella and L. diaphana which were concordant with the classical morphology. On the other hand, for L. viatrix populations a number of 1 to 6 profiles were generated while morphology provided the species pattern results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号