首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

2.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

3.
The proacrosin-acrosin proteinase system was measured and partially characterized in unpurified extracts of washed hamster epididymal sperm. Autoactivation experiments demonstrated that proacrosin accounted for greater than 98% of the acrosin activity in the sperm extracts from individual animals. Several bands of proteinase activity were observed on gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoretic (gelatin-SDS-PAGE) zymography. The major proteinase activities in the nonactivated extracts corresponded to relative molecular masses (Mr) of 51,000 to 56,000, while less distinct digestion occurred with relative molecular masses of 37,000 to 49,000. It was demonstrated that after a serial dilution of the sperm extract, the proteinase activity in as few as 6,000 sperm could readily be detected by the gelatin-SDS-PAGE methods. Time-course activation studies showed that the zymogen was completely converted to active proteinase in 45-60 min at pH 8.0 and 25 degrees C. This autoconversion process was markedly inhibited by calcium, sodium, and heparin. However, each of these compounds stimulated the proteolytic activity of acrosin. These studies demonstrate that the proacrosin-acrosin system can be investigated in extracts of nonpurified hamster epididymal sperm.  相似文献   

4.
Renibacterium salmoninarum is a Gram-positive diplo-bacillus and the causative agent of bacterial kidney disease, a prevalent disease of salmonid fish. Virulent isolates of R. salmoninarum have a hydrophobic cell surface and express the 57-58 kDa protein (p57). Here we have investigated parameters which effect cell hydrophobicity and p57 degradation. Incubation of R. salmoninarum cells at 37 degrees C for > 4 h decreased cell surface hydrophobicity as measured by the salt aggregation assay, and decreased the amount of cell associated p57. Incubation of cells at lower temperatures (22, 17, 4 or -20 degrees C) for up to 16 h did not reduce hydrophobicity or the amount of cell associated p57. Both the loss of cell surface hydrophobicity and the degradation of p57 were inhibited by pre-incubation with the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Cell surface hydrophobicity was specifically reconstituted by incubation with extracellular protein (ECP) concentrated from culture supernatant and was correlated with the reassociation of p57 onto the bacterial cell surface as determined by western blot and total protein stain analyses. The ability of p57 to reassociate suggests that the bacterial cell surface is not irreversibly modified by the 37 degrees C treatment and that p57 contributes to the hydrophobic nature of R. salmoninarum. In summary, we describe parameters effecting the removal of the p57 virulence factor and suggest the utility of this modification for generating a whole cell vaccine against bacterial kidney disease.  相似文献   

5.
Artemia trypsin-like proteinase has been reported previously to be highly inhibited in the embryo (B. Ezquieta and C.G. Vallejo (1985) Comp. Biochem. Physiol. 82B, 731-736). We report now that Artemia lipovitellin, the major storage protein complex, inhibits the proteinase. We have carried out an in vitro study of the characteristics of the inhibition. Lipovitellin, a glycolipoprotein of high molecular mass (650 kDa), behaves initially as a substrate but after a limited proteolysis becomes an inhibitor of the proteinase. The enzyme although inhibited in the hydrolysis of the protein substrate retains activity toward low molecular weight substrates. The residual activity on the protein substrate is inhibited by small inhibitors of the proteinase. These features of lipovitellin inhibition are reminiscent of the trap mechanism of alpha 2-macroglobulin inhibition, previously proposed as suitable for regulating proteolytic processes involved in development. Inhibition by lipovitellin is greater at low temperatures and has been determined at 17 and 37 degrees C, in the lower and higher part of the viable temperature range of Artemia development. At high temperature the proteinase hydrolyzes the inhibitor quite efficiently and the inhibition is lower. The inhibition by lipovitellin appears specific for Artemia trypsin-like proteinase when compared with other control pairs protein/proteinase. The results may provide support for an additional role of storage proteins as developmental inhibitors of proteinases.  相似文献   

6.
Pancreatic islets of Wistar rats were prepared by digestion with collagenase and then washed and isolated at three different temperatures (4, 22 and 37 degrees C). The efficiency of washing with regard to proteolytic and collagenolytic activities in the wash buffer was not affected by the temperatures used. The islet thiol:protein-disulphide oxidoreductase activity (EC 1.8.4.2) was apparently unchanged, whereas washing temperatures lower than 37 degrees C resulted in a diminished insulin content. The insulin secretion of islets, isolated at 4 degrees C, is reduced in response to glucose without changing the sigmoidal shape of dose-response curve.  相似文献   

7.
Proteolytic activities in soluble protein extracts from Mamestra brassicae (cabbage moth) larval midgut were analysed using specific peptide substrates and proteinase inhibitors. Serine proteinases were the major activities detected, with chymotrypsin-like and trypsin-like activities being responsible for approximately 62% and 19% of the total proteolytic activity towards a non-specific protein substrate. Only small amounts of elastase-like activities could be detected. The serine proteinases were active across the pH range 7-12.5, with both trypsin-like and chymotrypsin-like activities maximal at pH 11.5. The digestive proteinases were stable to the alkaline environment of the lepidopteran gut over the timescale of passage of food through the gut, with 50% of trypsin and 40% of chymotrypsin activity remaining after 6h at pH 12, 37 degrees C. Soybean Kunitz trypsin inhibitor (SKTI) ingestion by the larvae had a growth-inhibitory effect, and induced inhibitor-insensitive trypsin-like activity. Qualitative and quantitative changes in proteinase activity bands after gel electrophoresis of gut extracts were evident in SKTI-fed larvae when compared with controls, with increases in levels of most bands, appearance of new bands, and a decrease in the major proteinase band present in extracts from control insects.  相似文献   

8.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

9.
With the use of a high yield prokaryotic expression system, large amounts of human eosinophil cationic protein (ECP) have been obtained. This has allowed a thorough kinetic study of the ribonuclease activity of this protein. The catalytic efficiencies for oligouridylic acids of the type (Up)nU>p, mononucleotides U>p and C>p, and dinucleoside monophosphates CpA, UpA, and UpG have been interpreted by the specific subsites distribution in ECP. The distribution of products derived from digestion of high molecular mass substrates, such as poly(U) and poly(C), by ECP was compared with that of RNase A. The characteristic cleavage pattern of polynucleotides by ECP suggests that an exonuclease-like mechanism is predominantly favored in comparison to the endonuclease catalytic mechanism of RNase A. Comparative molecular modeling with bovine pancreatic RNase A-substrate analog crystal complexes revealed important differences in the subsite structure, whereas the secondary phosphate-binding site (p2) is lacking, the secondary base subsite (B2) is severely impaired, and there are new interactions at the po, Bo, and p-1 sites, located upstream of the P-O-5' cleavable phosphodiester bond, that are not found in RNase A. The differences in the multisubsites structure could explain the reduced catalytic efficiency of ECP and the shift from an endonuclease to an exonuclease-type mechanism.  相似文献   

10.
Eleven cold-tolerant Trichoderma isolates were screened for the production of proteolytic activities at 10 degrees C. Based on the activity profiles determined with paranitroanilide substrates at 5 degrees C, strain T221 identified as Trichoderma atroviride was selected for further investigations. The culture broth of the strain grown at 10 degrees C in casein-containing culture medium was concentrated by lyophilization and subjected to gel filtration, which was followed by chromatofocusing of the fraction showing the highest activity on N-benzoyl-Phe-Val-Arg-paranitroanilide. The purified enzyme had a molecular weight of 24 kDa, an isoelectric point of 7.3 and a pH optimum of 6.2. The temperature optimum of 25 degrees C and the low thermal stability suggested that it is a true cold-adapted enzyme. Substrate specificity data indicate that the enzyme is a proteinase with a preference for Arg or Lys at the P1 position. The effect of proteinase inhibitors suggests that the enzyme has a binding pocket similar to the one present in trypsin.  相似文献   

11.
Thermus sp. strain Rt41A produces an extracellular thermostable alkaline proteinase. The enzyme has a high isoelectric point (10.25-10.5) which can be exploited in purification by using cation-exchange chromatography. The proteinase was purified to homogeneity and has a molecular mass of 32.5 kDa by SDS/PAGE. It is a glycoprotein, containing 0.7% carbohydrate as glucose equivalents, and has four half-cystine residues present as two disulphide bonds. Maximum proteolytic activity was observed at pH 8.0 against azocasein and greater than 75% of this activity was retained in the pH range 7.0-10.0. Substrate inhibition was observed with casein and azocasein. The enzyme was stable in the pH range 5.0-10.0 and maximum activity, in a 10-min assay, was observed at 90 degrees C with 5 mM CaCl2 present. No loss of activity was observed after 24 h at 70 degrees C and the half-lives at 80 degrees C and 90 degrees C were 13.5 h and 20 min, respectively. Removal of Ca2+ reduced the temperature for maximum proteolytic activity against azocasein to 60 degrees C and the half-life at 70 degrees C was 2.85 min. The enzyme was stable at low and high ionic strength and in the presence of denaturing reagents and organic solvents. Rt41A proteinase cleaved a number of synthetic amino acid p-nitrophenol esters, the kinetic data indicating that small aliphatic or aromatic amino acids were the preferred residue at the P1 position. The kinetic data for the hydrolysis of a number of peptide p-nitroanilide substrates are also reported. Primary cleavage of the oxidized insulin B chain occurred at sites where the P1' amino acid was aromatic. Minor cleavage sites (24 h incubation) were for amino acids with aliphatic side chains at the P1' position. The esterase and insulin cleavage data indicate the specificity is similar for both the P1 and P1' sites.  相似文献   

12.
1. A unique caseinolytic activity was found in the crude extract from chicken and rat skeletal muscle. Hardly any activity was detected at physiological assay temperatures at pH 8.0 but did well at around 60 degrees C. 2. The activity partially purified from rat skeletal muscle showed optimum pH at around 8.0 at 60 degrees C. It hardly hydrolyzed casein below 50 degrees C, but in the presence of 5 M urea it showed relatively high activity at 30 degrees C. The activity was completely stable at 50 degrees C for 1 hr. 3. The activity seems to be contained in a high mol. wt (450,000) protein from the elution volume and is due to cysteine proteinase from the effect of inhibitors. 4. The above properties agreed with those of the heat-stable alkaline proteinase (HAP) of fish purified homogeneously by electrophoresis. This seems to suggest that HAP may also exist in rat skeletal muscle.  相似文献   

13.
We have investigated the proteolytic degradation of [14C]methylcasein and 125I-labeled bovine serum albumin at pH 7.8 and 37 degrees C by lysates of rabbit reticulocytes purified from rabbit blood by two different procedures. (I) Lysates obtained from reticulocytes after removal of plasma and buffy coat as well as after washing of cells, degraded casein and albumin, and released from the two substrates 1.3%/h and 0.4%/h, respectively, of acid-soluble radioactivity. The activity towards both substrates was stimulated about 4-fold by ATP/Mg2+. Chromatography of whole blood on a column of cellulose prior to washing and lysis of cells had profound but differential effects on these activities in that stimulation of casein-degradation by ATP/Mg2+ was almost completely lost, whereas degradation of albumin, albeit at a low rate, was measurable in the presence of ATP/Mg2+ only. (II) Degradation of casein by these lysates is largely inhibited by a monospecific antibody against rabbit multicatalytic proteinase, whereas digestion of albumin is not affected by the antibody, either in the presence or absence of ATP/Mg2+. The latter activity is partially inhibited by a specific antibody against rabbit alpha 1-macroglobulin. (III) The immunoreactive amount of multicatalytic proteinase is about 1.2 micrograms per mg of lysate protein and almost identical in the two lysates. In contrast, the immunologically detectable levels of alpha 1-macroglobulin vary and are much lower in reticulocyte-lysates following chromatography on cellulose than in lysates from washed reticulocytes. (IV) Caseinolytic activity of multicatalytic proteinase, purified from rabbit reticulocyte lysate, is not activated by ATP/Mg2+ and the enzyme is proteolytically inactive towards albumin. On the other hand, a complex consisting of the proteinase inhibitor alpha 1-macroglobulin and the cysteine proteinase, cathepsin B, does degrade both substrates at pH 7.8, in an ATP/Mg2+-activated fashion. From these results it is concluded that the multicatalytic proteinase is an ATP-independent enzyme and a cellular constituent of rabbit reticulocytes whereas the activity stimulated by ATP/Mg2+ appears to be associated, at least in part, with a cysteine proteinase complexed to alpha 1-macroglobulin.  相似文献   

14.
We previously reported (J. Biol. Chem. (1986) 261, 6352-6465) that the photoaffinity ligand for the Ah receptor, [125I]-2-azido-3-iodo-7,8-dibromodibenzo-p-dioxin, upon incubation with the liver cytosol fraction from C57BL/6 mice, labeled in a 1:1 ratio two peptides that had apparent molecular masses of 95 and 70 kDa and similar proteolytic fragmentation patterns. In the cytosolic fraction of Hepa 1 cells, a cloned murine hepatoma cell line, the product of photoaffinity labeling is almost exclusively a 95-kDa peptide which is rapidly hydrolyzed by a Ca2+-dependent proteinase to a 70-kDa peptide as well as other fragments. Thus, the ligand binding unit of the Ah receptor in C57BL/6 mouse liver and Hepa 1 cell is a 95-kDa peptide, and the 70-kDa fragment is a proteolytic artifact. The Ca2+-dependent proteinase which hydrolyzes the 95-kDa peptide has the properties of calpain II: (i) an absolute requirement for Ca2+, with maximal activity at 0.5 to 1.0 mM Ca2+; (ii) a pH optimum of 7.5 to 8.0; (iii) inhibition by EDTA, iodoacetamide, leupeptin and L-trans-epoxysuccinylleucylamido(4-guanidino)butane, but not by soybean trypsin inhibitor, aprotinin, or phenylmethanesufonyl fluoride. Upon chromatographic separation of the liver cytosol of C57BL/6 mice on DEAE-Sephacel, Ca2+-dependent proteinase activity (using casein or the labeled 95-kDa peptide as substrates) elutes with 0.25 M NaCl, and a specific proteinase inhibitor elutes with 0.15 M NaCl. Ca2+-dependent proteinase activity that hydrolyzes the 95-kDa peptide is found in the liver cytosols of several mammalian species.  相似文献   

15.
An enzyme-probe method to detect structural changes in the myosin rod   总被引:1,自引:0,他引:1  
The temperature-dependence of local melting within the alpha-helical, coiled-coil structure of rabbit myosin rod has been investigated by following changes in the rate constants of proteolytic digestion. The kinetics of fragmentation of the rod by three different enzymes (alpha-chymotrypsin, trypsin and papain) over the temperature range 5 to 40 degrees C (pH 7, I = 0.5) has been monitored by electrophoresis of the digestion products on sodium dodecyl sulfate/polyacrylamide gels. All rate constants were corrected for the intrinsic temperature-dependence of the enzyme by comparison with model substrates. Results from the three enzyme-probes are similar in showing that local melting within the rod occurs in two distinct stages. At temperatures between 5 and 25 degrees C, melting is confined to a restricted segment of the rod structure near the light meromyosin/heavy meromyosin junction. At temperatures between 25 and 40 degrees C, a wider segment of the rod lysing between the junction and the short subfragment-2 segment (the hinge domain) appears to be melting, judging from the broad spectrum of cleavage sites observed in this region. Results are compared with those from other physicochemical methods that measure the hinging or opening of the coiled-coil structure of the rod.  相似文献   

16.
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.  相似文献   

17.
Changes in soluble proteins and Rubisco (E.C.4.1.1.39) contents were examined in leaves of nitrogen-deprived and nitrogen-sufficient soybeans. Rubisco content was very responsive to nitrogen stress, and this protein appeared to be the largest source of mobilizable nitrogen in the senescent leaf. Loss of soluble proteins and Rubisco was associated with a decrease in the activities of several proteolytic enzymes measured using artificial substrates: carboxypeptidase, aminopeptidase and haemoglobinase.The in vitro activity of enzyme(s) which can degrade Rubisco was investigated using endogenous Rubisco and in vitro radiolabelled Rubisco as substrates. Highest endopeptidic cleavage of endogenous Rubisco occured at pH 4; the enzyme responsible for this breakdown appeared to be a sulfhydryl-dependent proteinase. In contrast, [14C] Rubisco was attacked preferentially at pH 9, by a peptide hydrolase sensitive to EDTA. No increase in Rubisco-degrading activities was detected in nitrogen-deficient soybean leaves compared to control plant leaves.Abbreviations EDTA Ethylenediaminetetraacetate - LS Large Subunit of Rubisco - NEM N-ethylmaleimide - pCMB Parachloromercuribenzoate - PMSF Phenylmethylsulfonyl-fluoride - Rubisco Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase  相似文献   

18.
The temperature-dependence of local melting within the subfragment-2 region of rabbit skeletal muscle myosin has been investigated using an enzyme-probe technique. Rate constants of fragmentation of two long subfragment-2 particles (61,000 Mr and 53,000 Mr per polypeptide chain) and a short subfragment-2 particle (34,000 Mr per polypeptide chain) by three different enzymes (alpha-chymotrypsin, trypsin and papain) have been determined over the temperature range 5 to 40 degrees C. We followed the time-course of digestion at specific sites at high (I = 0.50, pH 7.3) and low (physiological, I = 0.15, pH 7.3) ionic strengths by electrophoresis of the digestion products on sodium dodecyl sulfate-containing gels. All rate constants were corrected for the intrinsic temperature-dependence of the enzymes by comparison with model substrates. Normalized rate constant versus temperature profiles for the three enzyme-probes are similar in showing that local melting in long subfragment-2 (61,000 Mr) occurs in two distinct stages as was observed earlier for the intact myosin rod. Over the temperature range 5 to 25 degrees C a restricted region at Mr = 53,000 to 50,000 from the N terminus of the rod (the light meromyosin/heavy meromyosin junction) shows the highest susceptibility to proteolytic cleavage. At temperatures above 25 degrees C local melting was detected by all three enzymes at several specific sites within the hinge domain (Mr = 53,000 to 34,000). Activation energies for cleavage at the susceptible sites were similar for the three enzyme probes. They suggest that this region of the myosin rod has significantly lower thermal stability than the flanking light meromyosin and short subfragment-2 segments. These results, together with other physico-chemical studies, point to the hinge domain of the myosin cross-bridge as an important functional element in the mechanism of force generation in muscle.  相似文献   

19.
In the psychrophilic bacterium Vibrio sp. strain ANT-300, the rate of protein degradation in vivo, measured at fixed temperatures, increased with elevation of the growth temperature. A shift in growth temperature induced a marked increase in this rate. Dialysed cell-free extracts hydrolysed exogenous insulin, globin and casein (in decreasing order of activity) but did not hydrolyse exogenous cytochrome c. Cells contained at least seven protease separated by DEAE-Sephacel chromatography, one of which was an ATP-dependent serine protease. The ATP-dependent proteolytic activity in extracts of cells incubated for 3 h at 16 degrees C after a shift-up from 0 degrees C increased to a level 36% and 17% higher than that of cells grown at 0 degrees C and 13 degrees C, respectively. A shift-down to 0 degrees C from 13 degrees C induced only a slight increase in the proteolytic activity. Extracts of all cells, whether exposed to temperature shifts or not, showed the same temperature dependence with respect to both ATP-dependent and ATP-independent protease activity. In all the extracts these proteases also exhibited the same heat lability. The ATP-dependent protease was inactivated by incubation at temperatures above 25 degrees C. There was an increase in ATP-independent protease activity during incubation at temperatures between 25 and 30 degrees C, but a decrease at 35 degrees C and higher. These results suggest that the marked increases in proteolysis in vivo, caused by a shift in temperature, may result not only from increases in levels of ATP-dependent serine protease(s) but also from increases in the susceptibility of proteins to degradation.  相似文献   

20.
A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae   总被引:2,自引:0,他引:2  
A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号