共查询到14条相似文献,搜索用时 0 毫秒
1.
José M. Rodríguez-Peña Sonia Díez-Muñiz Clara Bermejo César Nombela Javier Arroyo 《FEBS letters》2013
Yeast adaptation to conditions in which cell wall integrity is compromised mainly relies on the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Zymolyase, a mixture of cell wall-digesting enzymes, triggers a peculiar signaling mechanism in which activation of the CWI pathway is dependent on the high-osmolarity glycerol MAPK pathway. We have identified inhibitors of the principal enzyme activities present in zymolyase and tested their effect on the activation of the MAPK of the CWI pathway, Slt2/Mpk1. Eventually, only β-1,3-glucanase and protease activities were essential to elicit Slt2 activation and confer lytic power to zymolyase. Moreover, we show that the osmosensor Hkr1 is required for signaling, being the most upstream element identified to date. 相似文献
2.
Xiaohui Ding Qilin Yu Bing Zhang Ning Xu Chang Jia Yijie Dong Yulu Chen Laijun Xing Mingchun Li 《Biochemical and biophysical research communications》2014
The type II Ca2+/calmodulin-dependent protein kinases (CaMKs) are thought to play a vital role in cellular regulation in mammalian cells. Two genes CMK1 and CMK2 in the Candida albicans genome encode homologues of mammalian CaMKs. In this work, we constructed the cmk1Δ/Δ, the cmk2Δ/Δ and the cmk1Δ/Δcmk2Δ/Δ mutants and found that CaMKs function in cell wall integrity (CWI) and cellular redox regulation. Loss of either CMK1 or CMK2, or both resulted in increased expression of CWI-related genes under Calcofluor white (CFW) treatment. Besides, CaMKs are essential for the maintenance of cellular redox balance. Disruption of either CMK1 or CMK2, or both not only led to a significant increase of intracellular ROS levels, but also led to a decrease of the mitochondrial membrane potential (MMP), suggesting the important roles that CaMKs play in the maintenance of the mitochondrial function. 相似文献
3.
Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO 总被引:1,自引:0,他引:1
We have previously shown that the V-ATPase a2-subunit isoform interacts specifically, and in an intra-endosomal acidification-dependent manner, with the Arf-GEF ARNO. In the present study, we examined the molecular mechanism of this interaction using synthetic peptides and purified recombinant proteins in protein-association assays. In these experiments, we revealed the involvement of multiple sites on the N-terminus of the V-ATPase a2-subunit (a2N) in the association with ARNO. While six a2N-derived peptides interact with wild-type ARNO, only two of them (named a2N-01 and a2N-03) bind to its catalytic Sec7-domain. However, of these, only the a2N-01 peptide (MGSLFRSESMCLAQLFL) showed specificity towards the Sec7-domain compared to other domains of the ARNO protein. Surface plasmon resonance kinetic analysis revealed a very strong binding affinity between this a2N-01 peptide and the Sec7-domain of ARNO, with dissociation constant KD = 3.44 × 10−7 M, similar to the KD = 3.13 × 10−7 M binding affinity between wild-type a2N and the full-length ARNO protein. In further pull-down experiments, we also revealed the involvement of multiple sites on ARNO itself in the association with a2N. However, while its catalytic Sec7-domain has the strongest interaction, the PH-, and PB-domains show much weaker binding to a2N. Interestingly, an interaction of the a2N to a peptide corresponding to ARNO's PB-domain was abolished by phosphorylation of ARNO residue Ser392. The 3D-structures of the non-phosphorylated and phosphorylated peptides were resolved by NMR spectroscopy, and we have identified rearrangements resulting from Ser392 phosphorylation. Homology modeling suggests that these alterations may modulate the access of the a2N to its interaction pocket on ARNO that is formed by the Sec7 and PB-domains. Overall, our data indicate that the interaction between the a2-subunit of V-ATPase and ARNO is a complex process involving various binding sites on both proteins. Importantly, the binding affinity between the a2-subunit and ARNO is in the same range as those previously reported for the intramolecular association of subunits within V-ATPase complex itself, indicating an important cell biological role for the interaction between the V-ATPase and small GTPase regulatory proteins. 相似文献
4.
Chenyun Guo Cuiying Yi Yu Peng Yi Wen Donghai Lin 《Biochemical and biophysical research communications》2013
Human Raf-1 kinase inhibitor protein (hRKIP) is a small multi-functional protein of 187 residues. It contains a conserved pocket, which binds a wide range of ligands from various small molecules to distinct proteins. To provide a structural basis for the ligand diversity of RKIP, we herein determined the solution structure of hRKIP, and analyzed its structural dynamics. In solution, hRKIP mainly comprises two antiparallel β sheets, two α helices and two 310 helices. NMR dynamic analysis reveals that the overall structure of hRKIP is rigid, but its C-terminal helix which is close to the ligand-binding site is mobile. In addition, residues around the ligand-binding pocket exhibit significant conformational exchange on the μs–ms timescale. Conformational flexibility may allow the ligand-binding pocket and the C-terminal helix to adopt various conformations to interact with different substrates. This work may shed light on the underlying molecular mechanisms of how hRKIP recognizes and binds diverse substrate ligands. 相似文献
5.
We previously showed that phorbol-12-myristate-13-acetate (PMA) mediates a robust PKC-dependent sensitization and desensitization of the highly homologous human Gs protein and adenylyl cyclase (AC)-linked D1 (hD1R) and D5 (hD5R) dopaminergic receptors, respectively. Here, we demonstrate using forskolin-mediated AC stimulation that PMA-mediated hD1R sensitization and hD5R desensitization is not associated with changes in AC activity. We next employed a series of chimeric hD1R and hD5R to delineate the underlying structural determinants dictating the subtype-specific regulation of human D1-like receptors by PMA. We first used chimeric receptors in which the whole terminal region (TR) spanning from the extracellular face of transmembrane domain 6 to the end of cytoplasmic tail (CT) or CT alone were exchanged between hD1R and hD5R. CT and TR swaps lead to chimeric hD1R and hD5R retaining PMA-induced sensitization and desensitization of wild type parent receptors. In striking contrast, hD1R sensitization and hD5R desensitization mediated by PMA are correspondingly switched to PMA-induced receptor desensitization and sensitization following the IL3 swap between hD1R and hD5R. Cell treatment with the PKC blocker, Gö6983, inhibits PMA-induced regulation of these chimeric receptors in a similar fashion to wild type receptors. Further studies with chimeras constructed by exchanging IL3 and TR show that PMA-induced regulation of these chimeras remains fully switched relative to their respective wild type parent receptor. Interestingly, results obtained with the exchange of IL3 and TR also reveal that the D1-like subtype-specific regulation by PMA, while fully dictated by IL3, can be modulated in a receptor conformation-dependent manner. Overall, our results strongly suggest that IL3 is the critical determinant underlying the subtype-specific regulation of human D1-like receptor responsiveness by PKC. 相似文献
6.
Haiyan Hu 《FEBS letters》2010,584(8):1549-1552
This work studied the role of cyclic AMP responsive element binding protein (CREB) in the up-regulation of M1 muscarinic acetylcholine receptor (M1 receptor) density by sarsasapogenin (ZMS) in CHO cells transfected with M1 receptor gene (CHOm1 cells). During cell aging, sarsasapogenin elevated M1 receptor density as well as CREB and phosphor-CREB (pCREB) levels. CREB peaked earliest, followed by pCREB and M1 receptor density peaked last. When CREB synthesis was blocked by antisense oligonucleotides, the elevation effect of sarsasapogenin on M1 receptor density was abolished. These results suggest that sarsasapogenin up-regulates M1 receptor density in aged cells by promoting CREB production and phosphorylation. Furthermore, the results support the hypothesis that pCREB regulates M1 receptor gene expression through heterodimer formation. 相似文献
7.
8.
Conformational changes of the Na+/K+-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg2+ and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations. Our data revealed that this model system consisting of only two domains retained the ability to adopt open or closed conformation, i.e. behavior, which is expected from the crystal structures of relative Ca2+-ATPase from sarco(endo)plasmic reticulum for the corresponding part of the entire enzyme. Our data revealed that the C45 is found in the closed conformation in the absence of any ligand, in the presence of Mg2+ only, or in the simultaneous presence of Mg2+ and ATP. Binding of the ATP alone (i.e. in the absence of Mg2+) induced open conformation of the C45. The fact that the transmembrane part of the enzyme was absent in our experiments suggested that the observed conformational changes are consequences only of the interaction with ATP or Mg2+ and may not be related to the transported cations binding/release, as generally believed. Our data are consistent with the model, where ATP binding to the low-affinity site induces conformational change of the cytoplasmic part of the enzyme, traditionally attributed to E2 → E1 transition, and subsequent Mg2+ binding to the enzyme-ATP complex induces in turn conformational change traditionally attributed to E1 → E2 transition. 相似文献
9.
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA−, carC−, gpaB−, gpbA−), the endogenous calcium (Ca2+) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca2+ signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1 ± 10.7% and 25.9 ± 2.1% respectively and demonstrate a link between Ca2+/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA−/carC− cells by 844 ± 136% compared to only 106 ± 6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms. 相似文献
10.
Jin-Kyoung Kim Soyoung Shin Ki-Woong Jeong Yong Sun Park Yangmee Kim 《生物化学与生物物理学报:生物膜》2010,1798(10):1913-3299
Piscidin 1 (Pis-1) is a novel cytotoxic peptide with a cationic α-helical structure isolated from the mast cells of hybrid striped bass. In our previous study, we showed that Pis-1[PG] with a substitution of Pro8 for Gly8 in Pis-1 had higher bacterial cell selectivity than Pis-1. We designed peptoid residue-substituted peptide, Pis-1[NkG], in which Gly8 of Pis-1 was replaced with Nlys (Lys peptoid residue). Pis-1[NkG] had higher antibacterial activity and lower cytotoxicity against mammalian cells than Pis-1 and Pis-1[PG]. We determined the tertiary structure of Pis-1[PG] and Pis-1[NkG] in the presence of DPC micelles by NMR spectroscopy. Both peptides had a three-turn helix in the C-terminal region and a bent structure in the center. Pis-1[PG] has a rigid bent structure at Pro8 whereas Pis-1[NkG] existed as a dynamic equilibrium of two conformers with a flexible hinge structure at Nlys8. Depolarization of the membrane potential of Staphylococcus aureus and confocal laser-scanning microscopy study revealed that Pis-1[NkG] effectively penetrated the bacterial cell membrane and accumulated in the cytoplasm, whereas Pis-1[PG] did not penetrate the membrane but remained outside or on the cell surface. Introduction of a lysine peptoid at position 8 of Pis-1 provided conformational flexibility and increased the positive charge at the hinge region; both factors facilitated penetration of the bacterial cell membrane and conferred bacterial cell selectivity on Pis-1[NkG]. 相似文献
11.
Runying Yang 《生物化学与生物物理学报:生物膜》2007,1768(2):324-335
MRP1 couples ATP binding/hydrolysis to solute transport. We have shown that ATP binding to nucleotide-binding-domain 1 (NBD1) plays a regulatory role whereas ATP hydrolysis at NBD2 plays a crucial role in ATP-dependent solute transport. However, how ATP is hydrolyzed at NBD2 is not well elucidated. To partially address this question, we have mutated the histidine residue in H-loop of MRP1 to either a residue that prevents the formation of hydrogen-bonds with ATP and other residues in MRP1 or a residue that may potentially form these hydrogen-bonds. Interestingly, substitution of H827 in NBD1 with residues that prevented formation of these hydrogen-bonds had no effect on the ATP-dependent solute transport whereas corresponding mutations in NBD2 almost abolished the ATP-dependent solute transport completely. In contrast, substitutions of H1486 in H-loop of NBD2 with residues that might potentially form these hydrogen-bonds exerted either full function or partial function, implying that hydrogen-bond formation between the residue at 1486 and the γ-phosphate of the bound ATP and/or other residues, such as putative catalytic base E1455, together with S769, G771, T1329 and K1333, etc., holds all the components necessary for ATP binding/hydrolysis firmly so that the activated water molecule can efficiently hydrolyze the bound ATP at NBD2. 相似文献
12.
Non-specific lipid transfer proteins belonging to LTP1 family represent the most important allergens for non pollen-related allergies to Rosaceae fruits in the Mediterranean area. Peach LTP1 (Pru p 3) is a major allergen and is considered the prototypic allergenic LTP. On the contrary, pear allergy without pollinosis seems to be under-reported when compared to other Rosaceae fruits suggesting that the as-yet-uncharacterized pear LTP1 (Pyr c 3) has in vivo a low allergenicity. We report here on the identification of four cDNAs encoding for LTP1 in pear fruits. The two isoforms exhibiting amino acid sequences most similar to those of peach and apple homologues were obtained as recombinant proteins. Such isoforms exhibited CD spectra and lipid binding ability typical of LTP1 family. Moreover, pear LTP1 mRNA was mainly found in the peel, as previously shown for other Rosaceae fruits. By means of IgE ELISA assays a considerable immunoreactivity of these proteins to LTP-sensitive patient sera was detected, even though allergic reactions after ingestion of pear were not reported in the clinical history of the patients. Finally, the abundance of LTP1 in protein extracts from pear peel, in which LTP1 from Rosaceae fruits is mainly confined, was estimated to be much lower as compared to peach peel. Our data suggest that the two isoforms of pear LTP1 characterized in this study possess biochemical features and IgE-binding ability similar to allergenic LTPs. Their low concentrations in pear might be the cause of the low frequency of LTP-mediated pear allergy. 相似文献
13.
Knobloch J Beckmann S Burmeister C Quack T Grevelding CG 《Experimental parasitology》2007,117(3):318-336
Drug-induced suppression of female schistosome sexual maturation is an auspicious strategy to combat schistosomiasis since the eggs are the causative agent. The establishment of drug targets requires knowledge about the molecular mechanisms that regulate the development of the female reproductive organs, which include vitellarium and ovary. This review summarizes recent studies suggesting tyrosine kinases as important factors for the regulation of female gonad development. In this context, especially cytoplasmatic tyrosine kinases of the Src class seem to play dominant roles. Moreover, experimental data and theoretical concepts are provided supporting a crosstalk between tyrosine kinase and TGFbeta signaling in the production of vitellocytes. Finally, we take advantage from the schistosome genome project to propose a model for the regulation of vitelline-cell production and differentiation. 相似文献
14.
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery 总被引:1,自引:0,他引:1
Mária A. Deli 《生物化学与生物物理学报:生物膜》2009,1788(4):892-910
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier. 相似文献