首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently reported that exogenous DNA injected into testis as a liposome complex can be transferred into the egg via sperm by natural mating and integrated in the genome (testis-mediated gene transfer: TMGT). Here, we studied the efficiency of each of the several liposomes in associating foreign DNA with sperm, the expression of an introduced gene in early embryos, and the presence of the DNA in fetuses and pups at different ages. The CMV/beta-actin/EGFP fusion gene, encapsulated with different liposomes, was injected into rat testis, and spermatozoa in the cauda epididymis were obtained 1, 4, and 14 days after injection. We tested each of the 8 liposomes, and found that only 2, DMRIE-C and SuperFect, led to the detection of foreign DNA on all of the days examined, with relatively higher ratios of rats having positive sperm. By means of TMGT using either of those two liposomes, more than 80% of morula-stage embryos expressed EGFP, as observed by fluorescence microscopy. Then we detected introduced DNA in the progeny by PCR and Southern dot blot, and found that the ratio of animals carrying the foreign DNA decreased as they developed, and that only a part of postpartum progeny were foreign-DNA-positive with high incidence of mosaicism. These results suggest that, although, the success rate is still limited, foreign DNA could be integrated into the genome of the progeny by TMGT at least under specific experimental conditions, the efficiency of which depends largely on the characteristics of the liposome. The results also suggest that TMGT could be applicable to fetal gene therapy as well as to the generation of transgenic animals.  相似文献   

2.
Cationic liposome-mediated in vivo gene transfer represents a promising approach for somatic gene therapy. To assess the most suitable liposome for gene delivery into a wide range of organs and fetuses in mice, we have explored several types of cationic liposomes conjugated with plasmid DNA carrying the beta-galactosidase gene through intravenous injection into pregnant animals. Transduction efficiency was assessed by Southern blot analysis and expression of the transferred gene was evaluated by enzymatic demonstration of beta-galactosidase activity. Through the analysis of several types of recently synthesized cationic liposome/lipid formulations, DMRIE-C reagent, a liposome formulation of the cationic lipid DMRIE (1, 2-dimyristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide) and cholesterol in membrane-filtered water met our requirements. When the plasmid DNA/DMRIE-C complexes were administered intravenously into pregnant mice at day 11.5 post coitus (p.c.), transferred genes were observed in several organs in dams and were expressed. Furthermore, although the copy numbers transferred into embryos were low, we observed reporter gene expression in the progeny.  相似文献   

3.
We have attempted to transfect testicular spermatozoa with plasmid DNA by direct injection into testes to obtain transgenic animals [this technique was thus termed "testis-mediated gene transfer (TMGT)"]. When injected males were mated with superovulated females 2 and 3 days after injection, (i) high efficiencies (more than 50%) of gene transmission were achieved in the mid-gestational F0 fetuses, (ii) the copy number of plasmid DNA in the fetuses was estimated to be less than 1 copy per diploid cell, and (iii) overt gene expression was not found in these fetuses. These findings suggest the possibility that plasmid DNA introduced into a testis is rapidly transported to the epididymis and then incorporated by epididymal spermatozoa. The purpose of this study was to elucidate the mechanism of TMGT by introducing trypan blue (TB) or Hoechst 33342 directly into testis. We found that TB is transported to the ducts of the caput epididymis via rete testis within 1 min after testis injection, and TB reached the corpus and cauda epididymis within 2-4 days after injection. Staining of spermatozoa isolated from any portion of epididymis was observed 4 days after injection of a solution containing Hoechst 33342. Injection of enhanced green fluorescent protein (EGFP) expression vector/liposome complex into testis resulted in transfection of epithelial cells of epididymal ducts facing the lumen, although the transfection efficiency appeared to be low. In vivo electroporation toward the caput epididymis immediately after injection of EGFP expression vector into a testis greatly improved the uptake of foreign DNA by the epididymal epithelial cells. PCR analysis using spermatozoa isolated from corpus and cauda epididymis 4 days after injection of a DNA/liposome complex into testis revealed exogenous DNA in these spermatozoa even after treatment with DNase I. These findings indicate that exogenous DNA introduced into tesits is rapidly transported to epididymal ducts via the rete testis and efferent ducts, and then incorporated by epithelial cells of epididymis and epididymal spermatozoa.  相似文献   

4.
Transgenic animals have been successfully produced by mass gene transfer techniques such as sperm-mediated gene transfer (SMGT). The aim of this work was to demonstrate transgene transmission by SMGT in chickens using dimethylsulfoxide (DMSO) or N,N-dimethylacetamide (DMAc) as transfectants after seminal plasma removal to prevent DNase activity. Sperm samples were prepared by repetitive washes, and after each wash sperm motility, seminal plasma proteins, exogenous DNA integrity and its uptake by spermatozoa were evaluated. Laying hens were inseminated using spermatozoa transfected with pEGFP-N1 vector in the presence of DMSO or DMAc. Transgene transmission in newborn chicks was evaluated by in vivo enhanced green fluorescent protein (EGFP) expression, RT-PCR and PCR analysis. DNA internalization was limited to sperm samples washed twice. The presence of DMSO or DMAc during transfection had no effect on fertilization or hatching rates. PCR analysis detected the presence of EGFP DNA in 38% of newborn chicks from the DMSO group and 19% from the DMAc group. EGFP mRNA was detected in 21% of newborn chicks from the DMSO group, as against 8.5% from the DMAc group. However, in vivo expression of EGFP was only observed in a single animal from the DMSO group. Our data revealed that the plasmid DNA-DMSO combination coupled with sperm washes can be an efficient method for transfection in chickens.  相似文献   

5.
Polycation liposome-mediated gene transfer in vivo   总被引:2,自引:0,他引:2  
The polycation liposome (PCL), a recently developed gene transfer system, is simply prepared by a modification of liposomes with cetylated polyethylenimine (PEI), and shows remarkable transgene efficiency with low cytotoxicity. In the present study, we investigated the applicability of PCLs for in vivo gene transfer, since the PCL-mediated transgene efficiency was found to be maintained in the presence of serum. PCLs composed of dioleoylphosphatidylethanolamine (DOPE) with 5 mol% cetyl PEI (PEI average mr. wt. 1800), were superior for transfection to those of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (2:1 as molar ratio) with 5 mol% cetyl PEI in vitro, although the latter PCLs were more efficient for gene transfer in vivo. PCL-DNA complexes were injected into mice via a tail or the portal vein, with the DNA being a plasmid encoding green fluorescent protein (GFP) or luciferase; and the expression was monitored qualitatively or quantitatively, respectively. Tail vein injection resulted in high expression of both GFP and luciferase genes in lung, and portal vein injection resulted in high expression of both genes in the liver. Concerning the gene delivery efficiency, the PCL was found to be superior to PEI or cetyl PEI alone. The optimal conditions for in vivo transfection with PCLs were also examined.  相似文献   

6.
The polycation liposome (PCL), a recently developed gene transfer system, is simply prepared by a modification of liposomes with cetylated polyethylenimine (PEI), and shows remarkable transgene efficiency with low cytotoxicity. In the present study, we investigated the applicability of PCLs for in vivo gene transfer, since the PCL-mediated transgene efficiency was found to be maintained in the presence of serum. PCLs composed of dioleoylphosphatidylethanolamine (DOPE) with 5 mol% cetyl PEI (PEI average mr. wt. 1800), were superior for transfection to those of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (2:1 as molar ratio) with 5 mol% cetyl PEI in vitro, although the latter PCLs were more efficient for gene transfer in vivo. PCL-DNA complexes were injected into mice via a tail or the portal vein, with the DNA being a plasmid encoding green fluorescent protein (GFP) or luciferase; and the expression was monitored qualitatively or quantitatively, respectively. Tail vein injection resulted in high expression of both GFP and luciferase genes in lung, and portal vein injection resulted in high expression of both genes in the liver. Concerning the gene delivery efficiency, the PCL was found to be superior to PEI or cetyl PEI alone. The optimal conditions for in vivo transfection with PCLs were also examined.  相似文献   

7.
We evaluated the transfection efficiency of five different cationic liposome/plasmid DNA complexes, during the in vitro gene transfer into human epithelial tracheal cell lines. A dramatic correlation between the transfection efficiency and the charge ratio (positive charge of liposome to negative charge of DNA) has been found. DC-Chol-DOPE was found to be the most effective liposome formulation. Therefore, a morphological and structural analysis of DC-Chol-DOPE liposomes and DC-Chol-DOPE/DNA complexes, has been performed by transmission electron microscopy (TEM) and by confocal laser scanning microscopy (CLSM), respectively. The process of interaction between DC-Chol-DOPE/DNA complexes and human epithelial tracheal cells has been studied by CLSM. These results raise some issues for in vivo gene therapy.  相似文献   

8.
Cationic liposomes are useful to transfer genes into eukaryotic cells in vitro and in vivo. However, liposomes with good transfection efficiency are often cytotoxic, and also require serum-free conditions for optimal activity. In this report, we describe a new formulation of cationic liposome containing DC-6-14, O,O'-ditetradecanoyl-N-(alpha-trimethylammonioacetyl)diethan olamine chloride, dioleoylphosphatidylethanolamine and cholesterol for gene delivery into cultured human cells. This liposome, dispersed in 5% serum-containing growth medium, efficiently delivered a plasmid DNA for GFP (green fluorescent protein) into more than 80% of the cultured human cell hybrids derived from HeLa cells and normal fibroblasts. Flow cytometric analysis revealed that the efficiency of the GFP gene expression was 40-50% in a tumor-suppressed cell hybrid, while it was greatly reduced in the tumorigenic counterpart. The enhanced GFP expression in tumor-suppressed cell hybrids was quantitatively well correlated with a prolonged presence of the plasmid DNA, which had been labeled with another fluorescent probe, ethidium monoazide, within the cells. These results suggest that a newly developed cationic liposome is useful for gene delivery in serum-containing medium into human cells and the stability of the plasmid DNA inside the cell is a crucial step in this liposome-mediated gene expression. The mechanisms by which cationic liposome mediates gene transfer into eukaryotic cells are also discussed.  相似文献   

9.
New directions in liposome gene delivery   总被引:4,自引:0,他引:4  
The history of liposomes, progress in liposome gene delivery, and future directions are discussed. Specific characteristics of liposomes and DNA:liposome complexes have been identified that are essential for optimal delivery and gene expression. Of particular interest are the requirements for increased delivery and high levels of gene expression in vivo. At present, significant efforts are focused towards achieving specific delivery and gene expression in target organs and tissues.  相似文献   

10.
11.
Wang Z  Yuan Z  Jin L 《Biotechnology journal》2008,3(9-10):1286-1295
Gene delivery into human hepatocytes remains a critical issue for the development of liver-directed gene therapy. Gene delivery based on non-viral vectors is an attractive approach relative to viral vectors. In this report, novel delivery system of preS/liposome/DNA virus-like particle (VLP) was developed for gene transfection into hepatocytes in vivo and in vitro. Plasmid pCMVbeta, expressing beta-galactosidase, was encapsulated with cationic liposome, and then the histidine-tagged preS domain of hepatitis B virus was coated on the surface of liposome/DNA to form preS/liposome/ DNA VLP. Transfection efficiencies of preS/liposome/DNA, liposome/DNA, naked DNA and preS were analyzed using several different human cell lines. The highest transfection efficiency was found using preS/liposome/DNA VLP as the transfection reagent in human hepatocyte (HH) cell line. Results show that preS domain of hepatitis B virus coated on liposome/DNA can be used for highly efficient gene transfection into human hepatocytes. Moreover, the target characteristic of preS/liposome/DNA was analyzed in vivo. After preS/liposome/DNA VLP was injected into immunocompromised (Nude) mice via the tail vein, most of beta-galactosidase was expressed in the liver; however, no significant target expression was found with the injection of liposome/ DNA or naked DNA. Our results show that preS/liposome/DNA VLP can be used as a novel liver-specific gene delivery system.  相似文献   

12.
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.  相似文献   

13.
This report describes gene transfer in vitro as well as in vivo using cetylated low-molecular mass (600 Da) polyethylenimine (28% of amine groups substituted with cetyl moieties), termed CT-PEI. This compound is hydrophobic and has to be incorporated into liposomes in order to be suitable for gene transfer studies. Serum-induced plasmid DNA degradation assay demonstrated that CT-PEI-containing liposomal carriers could protect complexed DNA (probably via condensation). In vitro luciferase gene expression achieved using medium supplemented with 10% serum was comparable to that achieved in serum-reduced medium and was highest for CT-PEI/cholesterol liposomes, followed by CT-PEI/dioleoylphosphatidylcholine liposomes and PEI 600 Da (uncetylated) carrier. In vivo systemic transfer into mice was most efficient when liposome formulations contained CT-PEI and cholesterol. Higher luciferase expression was then observed in lungs than in liver. In conclusion: liposomes containing cetylated polyethylenimine and cholesterol are a suitable vehicle for investigating systemic plasmid DNA transfer into lungs.  相似文献   

14.
A 750 kDa polyethylenimine (PEI 750 kDa) combined with albumin has been found to mediate in vivo a highly efficient transfection of small amounts of plasmid DNA. Using this exceptional carrier system we evaluated the inflammatory responses triggered by CpG sequences found in plasmid DNA. Using as little as 1 mug DNA transferred in vivo caused an almost negligible response from pro-inflammatory cytokines (IFN-gamma, IL-12 and TNF-alpha), as assessed in serum with a commercially available kit. Administering 750 kDa PEI/albumin/plasmid DNA complexes every three days assured a high and prolonged in vivo expression of a reporter protein. A further increase in the level of such protein was obtained by administering the investigated complexes concurrently with dexamethasone. High gene transfer capability and a relatively low pro-inflammatory response of 750 kDa PEI/albumin/DNA complexes can be exploited for recurrent gene transfer into lungs to treat (via inhalation or instillation) cancer or genetic disorders such as cystic fibrosis.  相似文献   

15.
To explore the possibility that specific characteristics of the epithelium of the male tract can be modified, transfections of the mouse vas deferens have been performed using in vivo injections of cationic DNA/liposome complexes. Gene transfer was done employing the reporter genes pEGFP-C1 encoding Green Fluorescent Protein (GFP) and pCMV-nls-beta encoding the nuclear beta-Galactosidase (beta-Gal). Foreign gene expression reached a maximum of 6.8% in the epithelial cells of the vas after treatment with the nuclear beta-Gal gene construction and of 13.3% after employing the GFP gene construction. Expression of the GFP gene appeared from one week up to three months following injection, and it appeared as patches of modified cells along the epithelium. Results from immunocytochemistry and Western Blotting support the conclusion that transfection of epithelial cells was achieved. We have also transfected the vas using gene constructions that express secretory proteins--specifically, the reporter system pSEAP-control that expresses a secretory form of human placental alkaline phosphatase, and the pGFP-Ctk-37 that expresses a secretion form of GFP. In both cases, the fluids expressed from the transfected vas showed a significant increase of alkaline phosphatase activity after pSEAP transfection and the presence of GFP protein when pGFP-Ctk-37 gene construction was employed. Our results indicate that the vas can be transfected in vivo using liposomes as vectors of foreign genes and that the vas fluid contents can be modified.  相似文献   

16.
The human retinal pigment epithelium (RPE) is a potential target tissue for directed transfer of candidate genes to treat age‐related macular degeneration (AMD). The RPE is uniquely suited to gene therapy protocols that use liposome‐mediated DNA transfer because of its high intrinsic phagocytic function in vivo. In these studies, we examined the efficacy of human RPE cell uptake and expression of the green fluorescent protein (GFP) and neomycin resistance marker genes by polyplex‐mediated gene transfer in vitro. The effects of varying DNA and polyplex concentration and ratios on GFP transgene expression were examined. A narrow range of experimental conditions were found to maximize transgene expression; most important were the DNA concentration and the DNA:polyplex ratio. The transfection efficiency for human RPE cells was reproducibly 20\% in vitro by this method and reached a maximum level of expression after 48 h. There was a rapid decline in gene expression over 2 weeks following polyplex‐mediated gene transfer, but stable integration does occur at low frequencies with and without selection. J. Cell. Biochem. 76:153–160, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

18.
With the goal of developing non-viral techniques for exogenous gene delivery into mammalian cells, we have studied receptor-mediated gene transfer using complexes of plasmid DNA and galactosylated poly-L-lysine, poly(L-Lys)Gal. To evaluate the optimal parameters for efficient gene transfer into human hepatoma HepG2 cells by the DNA–poly(L-Lys)Gal complexes, the bacterial reporter genes lacZ and cat were used. Examination of the reporter gene expression level showed that the efficiency of DNA delivery into the cells depends on the structure of DNA–poly(L-Lys)Gal complexes formed at various ionic strength values. The efficiency of DNA transfer into the cells also depends on DNA/poly(L-Lys)Gal molar ratio in the complexes. Plasmid vector carrying human apolipoprotein A-I (apoA-I) gene was injected as its complex with poly(L-Lys)Gal into rat tail vein. Some level of ApoA-I was detected in the serum of the injected rats. Also, the human apoA-I-containing plasmid was found to be captured specifically by the rat liver cells and transported into the cell nuclei, where it can persist as an episome-like structure for at least a week. After repeated injections of DNA–poly(L-Lys)Gal complexes, the level of human ApoA-I in rat serum increases, probably, due to accumulation of functional human apoA-I gene in the liver cell nuclei. The data seem to be useful for the development of non-viral approaches to gene therapy of cardiovascular diseases.  相似文献   

19.
The development of an efficient transfection system in livestock cells is an important step towards investigating gene transfer and the functioning and production of transgenic animals. Important factors involved in cationic liposome mediated gene transfer were evaluated through in vitro transfection of bovine, caprine and ovine fibroblast cells. Transfection of plasmid DNA complexes of different commercially available liposomes (Lipofectamine, Lipofectin, Cellfectin and DMRIE-C; Gibco-BRL, USA) was evaluated utilizing the following parameters: DNA/liposome ratio, cell density, DNA conformation, and the effect of transfection time on the efficiency of bovine fibroblasts to express a reporter gene. The effects and concentrations of liposomes were also evaluated in caprine and ovine fibroblasts. Lipofectamine alone and Lipofectamine with Plus reagent induced high-frequency expression of beta-galactosidase and neo genes in all cells evaluated (47 and 88.3%, respectively). Regarding phenotype, chromosomal stability was similar in transfected and non-transfected cells. The parameters set in this study will establish a foundation for utilizing transfected fibroblast cells to generate transgenic animals through nuclear transfer technology and gene function studies.  相似文献   

20.
In order to develop improved synthetic gene transfer vectors, we have synthesized bifunctional peptides composed of a DNA binding peptide (P2) and ligand peptides selected by the phage display technique on tracheal epithelial cells. We have evaluated the capacity of these peptides to enhance the gene transfer efficiency of the cationic lipid DOTAP to the mouse lung. To optimize the in vivo transfection efficiency, we first compared the efficiency of DOTAP to transfect the lung by either intravenous injection or aerosolization. We then tested DNA/Peptide/DOTAP complexes formed at different Peptide/DNA and DOTAP/DNA charge ratios. Under optimal conditions, precompaction of DNA by peptide P2 gave a higher expression in the mouse lung using the luciferase reporter gene than DOTAP/DNA complexes. A further increase of transfection efficiency was obtained with the bifunctional peptide P2-9. Experiments performed with the GFP reporter gene showed expression in the alveolar parenchyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号