首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that calcium is required for the starvation-induced differentiation of the slime mold, Physarum polycephalum. With the exception of calcium, each component of the complex starvation medium may be withheld and the organism will still differentiate into spherules. The results of the present study reveal that spherulation will proceed normally when the microplasmoidal cells are transferred from nutrient medium to a citrate buffer containing only 8 mM CaCl2. Electron microscopy and X-ray microprobe analysis reveal that there is an initial increase in the population of calcium-containing mitochondrial granules when the microplasmodia are induced to differentiate. However, as differentiation proceeds, these granules decrease in number and are virtually absent from the mitochondria of mature spherules. The accumulation and depletion of calcium-containing granules is not observed in a nondifferentiating strain of Physarum cultured under standard conditions, but is observed when this strain is first treated with a calcium-enriched nutrient medium that conditions it for spherulation. Changes in the cellular concentrations of NADH and lipid peroxides, and in the activity of superoxide dismutase, correspond temporally to the pattern of increase and depletion of the calcium-containing inclusions. The oxidative stress associated with starvation-induced spherulation may be a consequence of the active accumulation of calcium; the mobilization of this calcium may then be the event that initiates differentiation.  相似文献   

2.
Summary The molecular size of mitochondrial DNA (mtDNA) molecules and the number of copies of mtDNA per mitochondrion were evaluated from cultured cells of the tobacco BY-2 line derived fromNicotiana tabacum L. cv. Bright Yellow-2. To determine the DNA content per mitochondrion, protoplasts of cultured cells were stained with 4,6-diamidino-2-phenylindole (DAPI), and the intensity of the fluorescence emitted from the mitochondrial nuclei (mt-nuclei) was measured with a video-intensified photon counting microscope system (VIM system). Each mitochondrion except for those undergoing a division contained one mt-nucleus. The most frequently measured size of the DNA in the mitochondria was between 120 and 200 kilobase pairs (kbp) throughout the course of culture of the tobacco cells. Mitochondria containing more than 200 kbp of DNA increased significantly in number 24 h after transfer of the cells into fresh medium but their number fell as the culture continued. Because division of mitochondria began soon after transfer of the cells into fresh medium and continued for 3 days, the change of the DNA content per mitochondrion during the culture must correspond to DNA synthesis of mitochondria in the course of mitochondrial division. By contrast, the analyses of products of digestion by restriction endonucleases indicated that the genome size of the mtDNA was at least 270 kbp. Electron microscopy revealed that mtDNAs were circular molecules and their length ranged from 1 to 35 m, and 60% of them ranged from 7 to 11 rn. These results indicate that the mitochondrial genome in tobacco cells consists of multiple species of mtDNA molecules, and mitochondria do not contain all the mtDNA species. Therefore, mitochondria are heterogeneous in mtDNA composition.Abbreviations DAPI 4, 6-diamidino-2-phenylindole - mtDNA mitochondrial DNA - mt-genome mitochondrial genome - mt-nucleus mitochondrial nucleus - ptDNA proplastid DNA - pt-nucleus proplastid nucleus - VIM system video-intensified photon counting microscope system  相似文献   

3.
The myxomycetes are called slime molds because of the synthesis of copious amounts of extracellular material (slime) during parts of the life cycle. In Physarum polycephalum, small amounts of slime are produced during exponential growth of microplasmodia in shake flasks, but the amount of this slime increased 10- to 20-fold at 16 to 34 hr after microplasmodia were induced to form spherules by transferring them to salt solution. The slime obtained during both periods is the same; an acidic polysaccharide consisting of galactose, sulfate, and trace amounts of rhamnose. Analysis of the galactose-to-sulfate ratio gave a value of about 4 to 1. Infrared spectroscopy showed increased absorbance at 820 cm−1 characteristic of C-O-S vibrations. Electrophoresis on polyacrylamide gel revealed that the material moved as a single band which stained with Alcian Blue and periodic acid Shiff reagent. However, fractionation of identical material on Dowex columns and electrophoresis on cellulose acetate showed the slime to be made up of three major fractions. The polysaccharide appeared as an extracellular capsule closely adhering to the walls of the spherules. It could be separated from the wall by vigorous shaking. The increased synthesis of slime during spherulation was not blocked by cycloheximide, suggesting that new enzyme synthesis was not necessary for its formation.  相似文献   

4.
Abstract. The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. the responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. the addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. the white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. the results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

5.
The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. The responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. The addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. The white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. The results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

6.
A membrane-DNA complex was isolated by centrifugation of sheared lysate of isolated mitochondria in 20-60% sucrose step solution. Analyses using Hoechst 33258/CsCl density gradient centrifugation and restriction endonuclease treatment showed that DNA in the membrane-DNA complex was AT-rich compared with total mitochondrial DNA (mt DNA) and contained Eco RI fragments of E-4, 5 and 8, which were localized on the right hand of Physarum mitochondrial genome. Phenethyl alcohol (PEA) and ethidium bromide (EB) could disrupt the membrane-DNA complex to release DNA fragments from their complex in vitro. Addition of 0.5% or more PEA, which released 80-90% of the DNA from the membrane-DNA complex in vitro, inhibited not only mitochondrial nuclear division but also mitochondrial division in vivo. EB treatment at more than 1 mg/ml disrupted the membrane-DNA complex in vitro to release 77% of the total DNA in the complex. Addition of 10 micrograms/ml EB induced unequal mitochondrial nuclear division in the microplasmodia, e.g., a dividing dumbbell-shaped mitochondrion had the mt-nucleus in one side and as a result formed then one nucleated and one enucleated mitochondrion. From the EB-pretreated mitochondria, a lesser amount of the membrane-DNA complex was isolated than from the control. These findings mean than the unequal mt-nuclear division is due to dissociation of DNA and the membrane system in the membrane-DNA complex. They strongly suggested that the DNA region (E-4, 5 and 8), where the mitochondrial nucleus is associated with the mitochondrial membrane system plays an important role in mitochondrial nuclear division.  相似文献   

7.
Differentiation of the white mutant (LU887 x LU897) strain of Physarum polycephalum leading to spherule formation can be induced by CaCl(2) if the concentration in the nutrient medium is increased by 5mM prior to the transfer to a non-nutrient salts medium. All stages previously reported for the typical (M(3)cVII) strain of Physarum polycephalum from microplasmodia to spherules are seen but the mutant lacks the synchrony that the replacement technique induces in the typical strain. X-ray microanalyses locate calcium and phosphorus in granules in mitochondria and in the cytoplasm of specimens fixed without osmium. Mitochondria accumulate calcium-containing granules during early differentiation and appear to be essentially without granules in mature spherules. Mobilization of mitochondrial calcium is implicated in the initiation of differentiation. A longitudinally striated cytoplasmic inclusion is abundant in microplasmodia grown in media that have not been supplemented with additional calcium and is seen more rarely during calcium-induced spherulation. Whether or not this inclusion represents cytoplasmic contractile elements is unknown. The calcium-treated mutant strain, previously considered non-differentiating, may prove to be a good alternate model for the study of factors influencing differentiation. It was employed earlier as a control in studies of strains that readily spherulate in response to routine procedures.  相似文献   

8.
Changes in the level of antioxidant defenses and the concentration of free radical by-products were examined in differentiating (M3cVII and LU897 X LU863), non-differentiating (LU887 X LU897), and heterokaryon microplasmodia of the slime mold Physarum polycephalum during spherulation in salts-only medium. As differentiation proceeded, superoxide dismutase activity increased by as much as 46 fold; glutathione concentration and the rate of oxygen consumption decreased; cyanide-resistant respiration, hydrogen peroxide, and organic peroxide concentrations increased. The non-differentiating culture failed to exhibit any of these changes. A heterokaryon obtained by the fusion of differentiating and non-differentiating strains was observed to differentiate at a very retarded rate and to exhibit the changes observed in the spherulating strains at a correspondingly slower rate. These observations suggest that a free radical mechanism may be involved in the differentiation of Physarum microplasmodia into spherules.  相似文献   

9.
Induction of spherule formation in Physarum polycephalum by polyols   总被引:2,自引:1,他引:1       下载免费PDF全文
A method has been developed for inducing spherule formation (spherulation) in the myxomycete Physarum polycephalum by transferring the culture to synthetic medium containing 0.5 m mannitol or other polyols. This morphogenetic process occurred within 12 to 35 hr after the inducer was added. The mature spherules existed as distinct morphogenetic units, in contrast to the clusters of spherules formed during starvation. Ninety per cent of the spherules germinated by 24 hr in synthetic medium. The changes in the synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein during plasmodial growth, spherulation, and germination of spherules are described. When spherule formation was completed, RNA, protein, and DNA decreased, compared with the values at the beginning of the conversion. The incorporation of (3)H-uridine into trichloroacetic acid-insoluble material was different in each of these periods, and this incorporation was sensitive to actinomycin D. The amount of glycogen increased during growth, whereas it decreased during spherulation. (14)C-glucose could be taken up by the cells in the presence of the inducer, and mannitol could not replace glucose as a source of energy. The mode of action of mannitol and its mechanism of induction are discussed.  相似文献   

10.
Macrocyst (spherule) formation was induced in synchronized suspension cultures of microplasmodia of Physarum polycephalum under conditions where DNA synthesis was inhibited. Plasmodia in early G2 phase of nuclear cycle were able to differentiate to spherules in the presence of an inhibitor of DNA synthesis, whereas those in late G2 phase required another round of DNA replication before they could enter into the spherulation process. These facts suggest that commitment to DNA synthesis occurred about halfway through G2 phase. The idea was also supported by the results of autoradiographic study in which spherulating plasmodia were fed with radioactive thymidine and labelled plasmodia were scored at the terminal differentiation stage.  相似文献   

11.
NUCLEAR GENE DOSAGE EFFECTS ON MITOCHONDRIAL MASS AND DNA   总被引:6,自引:2,他引:4       下载免费PDF全文
In order to assess the effect of nuclear gene dosage on the regulation of mitochondria we have studied serial sections of a set of isogenic haploid and diploid cells of Saccharomyces cerevisiae, growing exponentially in the absence of catabolite repression, and determined the amount of mitochondrial DNA per cell. Mitochondria accounted for 14% of the cytoplasmic and 12% of the total cellular volume in all cells examined regardless of their ploidy or their apparent stage in the cell cycle. The mean number of mitochondria per cell was 22 in the diploid and 10 in the haploids. The volume distribution appeared unimodal and identical in haploids and diploids. The mitochondrial DNA accounted for 12.6 ± 1.2% and 13.5 ± 1.3% of the total cellular DNA in the diploid and haploid populations, respectively. These values correspond to 3.6 x 10-15 g, 2.2 x 109 daltons, or 44 genomes (50 x 106 daltons each) per haploid and twice that per diploid cell. On this basis, the average mitochondrion in these cells contains four mitochondrial genomes in both the haploid and the diploid.  相似文献   

12.
The amount of organellar DNA in a generative cell of Pharbitis nil was observed when squashed pollen grains collected on the day of flowering were stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole (DAPI). Using both DAPI-fluorescence microscopy and electron microscopy, observation of the same thin section of Technovit 7100 resin-embedded material revealed that all of the organellar DNA in mature generative cells is plastid DNA, and there is no mitochondrial DNA. During pollen development, we observed organellar DNA in fluorescence microscopic images using double-staining with DAPI and 3,3'-dihexyloxacarbocyanine iodide (DiOC6) and quantified the DNA using a video-intensified microscope photon counting system (VIMPCS). In the vegetative cells, the amounts of both mitochondrial and plastid DNA progressively decreased and had disappeared by 2 days before flowering. In the generative cells, mitochondrial DNA disappeared sooner than in the vegetative cells, indicating a more active mechanism for the decrease in mitochondrial DNA in the generative cells. In contrast, plastid DNA in the generative cells increased markedly. The DNA content per plastid was at a minimum value (corresponding to one copy of the plastid genome) 7 days before flowering, but it increased to a maximum value (corresponding to over 10 copies of the plastid genome) 2 days before flowering. Similar results were also obtained with immunogold electron microscopy using an anti-DNA antibody. These results suggest that the DNA content of mitochondria and plastids in P. nil is controlled independently during pollen development.  相似文献   

13.
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.  相似文献   

14.
A soluble cell fraction from exponentially growing microplasmodia of the slime mold, Physarum polycephalum, contains 12 electrophoretically distinguishable enzymes capable of hydrolyzing the aminopeptidase substrate, l-leucyl-2-naphthylamide (LNA) at pH 6.5. These enzymes appear to represent three distinct groups of LNA isoenzymes on the basis of electrophoretic mobilities, substrate ranges, and effects of divalent cations and of EDTA on peptidase activity. When spherulation is induced by transfer of microplasmodia to a starvation medium, there is a brief increase in one form of one of the enzymes followed by complete abolition of that enzyme group. These changes in the enzymatic profile occur within 4–5 h of transfer to a starvation medium, though spherules do not appear until 15–20 h later.  相似文献   

15.
DNA from plant mitochondria   总被引:18,自引:6,他引:12       下载免费PDF全文
DNA was isolated from a mitochondrial fraction of each of the following plant materials: Mung bean (Phaseolus aureus) etiolated hypocotyl; turnip (Brassica rapa) root; sweet potato (Ipomoea batatas) root; and onion (Allium cepa) bulb. It was found that all of these mitochondrial fractions contained DNA, the densities of which were identical (ρ=1.706 g·cm−3). An additional DNA (ρ=1.695) band found in the mitochondrial fraction of Brassica rapa, was identical to DNA separately isolated from the chloroplast-rich fraction. The origin of the second DNA from Allium mitochondrial fraction was not identified.

Contrary to the identity of the mitochondrial DNA, DNA from nuclear fractions differed not only with each other but from the corresponding mitochondrial DNA.

DNA from Phaseolus and Brassica mitochondria showed the hyperchromicity characteristic of double stranded, native DNA upon heating; Tm's in 0.0195 Na+ were the same; 72.0°. The amount of DNA within the mitochondrion of Phaseolus was estimated to be 5.0 × 10−10 μg; this estimate was made by isolating the mitochondrial DNA concomitantly with the known amount of added 15N2H B. subtilis DNA (ρ=1.740). Approximately the same amount of DNA was present in the mitochondrion of Brassica or Ipomoea.

  相似文献   

16.
To evaluate whether the absence or modification of paternal mitochondrial DNA or methylation of the oocyte mitochondrial DNA could be the molecular basis for maternal inheritance of mitochondria in mammals, the mitochondrial genome has been analyzed in four meiotic and postmeiotic testicular cell types, and in oocytes from the mouse. All four testicular cell types including spermatozoa contain mitochondrial DNA. Between meiosis and the end of spermatogenesis the number of mitochondrial genomes per haploid genome decreases 8- to 10-fold with spermatozoa containing approximately one copy of the mitochondrial genome per mitochondrion. Restriction enzyme digestions with six different enzymes indicate no gross differences in DNA sequence in the testicular mitochondrial DNA from meiotic cells, early haploid cells, late haploid cells, and spermatozoa. By the criterion of differential digestion with the isoschizomers, MspI and HpaII, the mitochondrial DNA is not differentially methylated during spermatogenesis. No methylation differences were detected in mitochondrial DNA from sperm and oocytes following digestion with seven methylation-sensitive restriction enzymes.  相似文献   

17.
A stereological comparison of the hepatic parenchymal cells from 125-g male rats given a daily injection for 6 days of either 5 mg of cortisone acetate or saline (controls) was carried out with both light and electron microscopy. Cortisone treatment results in an increase in average parenchymal cell cytoplasmic volume from 5100 to 5800 µ3 and a decrease in average nuclear diameter from 7.1 to 6.5 µ. The volume of the average mitochondrion is increased fourfold in midzonal and peripheral regions of hepatic lobules, and there is a decrease in the number of mitochondria per cell such that the total mitochondrial volume per cell remains approximately unchanged. The numbers of peroxisomes are reduced, while the numbers of lysosomes and lipid droplets are increased in all parts of the lobules. The average volume of glycogen is doubled in all cells. The areas of membranes of the smooth- and rough-surfaced endoplasmic reticulum are decreased to one-half and two-thirds of their control values, respectively. The effects of cortisone on these various structural elements is discussed with respect to steroid-related alterations in biochemical processes.  相似文献   

18.
In vivo and in vitro (tissue slices) incorporation of labeled precursors into DNA, RNA, and proteins was measured in mitochondria obtained from cerebral hemispheres, cerebellum, and brain stem of rats at different days of postnatal development. To compare the synthesis of macromolecules in mitochondria with that in other subcellular fractions, the incorporation of labeled precursors into DNA, RNA, and proteins extracted from nuclei and into RNA and proteins extracted from microsomes and cytoplasmic soluble fractions was also measured.The results obtained showed that the incorporation of [3H]thymidine into DNA and of [14C]leucine into proteins of nuclei and mitochondria from the various brain regions examined decreased during postnatal development, however, at 30 days of age the specific radioactivity of mitochondrial DNA was higher than that of nuclear DNA. [3H]Uridine incorporation into RNA decreased from 10 to 30 days of age in nuclei while in mitochondria it was quite similar at both ages. This result may be due to a faster turnover of mitochondrial RNA compared to that of mitochondrial DNA and proteins. The results obtained suggest an active biosynthesis of macromolecules in brain mitochondria and might indicate an intense biogenesis of these organelles in rat brain during postnatal development.Preliminary reports of these results were presented at the XI FEBS Meeting, Copenhagen, August 14–19, 1977, Poster number A2-2-155-3, and at III Meeting of Italian Biochem. Soc., Siena, October 3–5, 1977, Abstract C6.  相似文献   

19.
The accessory subunit of mitochondrial DNA polymerase γ, POLGβ, functions as a processivity factor in vitro. Here we show POLGβ has additional roles in mitochondrial DNA metabolism. Mitochondrial DNA is arranged in nucleoprotein complexes, or nucleoids, which often contain multiple copies of the mitochondrial genome. Gene-silencing of POLGβ increased nucleoid numbers, whereas over-expression of POLGβ reduced the number and increased the size of mitochondrial nucleoids. Both increased and decreased expression of POLGβ altered nucleoid structure and precipitated a marked decrease in 7S DNA molecules, which form short displacement-loops on mitochondrial DNA. Recombinant POLGβ preferentially bound to plasmids with a short displacement-loop, in contrast to POLGα. These findings support the view that the mitochondrial D-loop acts as a protein recruitment centre, and suggest POLGβ is a key factor in the organization of mitochondrial DNA in multigenomic nucleoprotein complexes.  相似文献   

20.
Summary Rat liver mitochondrial polyribosomes were isolated free from cytoplasmic ribonucleoprotein contaminations in a number of criteria (sedimentation and buoyant density patterns, ribosomal RNA composition). Heterogeneous poly A containing RNA from mitochondrial polysomes was purified by two-stage cellulose chromatography. This RNA was in vitro labelled with125I up to specific activity ~106–107 cts.min–1.µg –1 and used for hybridization experiments with separate complementary strands of mitochondrial DNA and nuclear DNA fragments. The proportions of mitochondrial poly A containing RNA that is complementary to heavy and light strands of mtDNA were respectively 31.5% and 8.3%. Besides, a significant RNA fraction was complementary to unique sequences of nuclear DNA (2–3 copies per haploid genome). The hybrids that were formed possessed a high Tm indicative of a perfect base pairing. A dual intracellular origin of mitochondrial messenger RNA is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号