首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Holyoak 《Oecologia》1993,93(3):435-444
The reasons why tests for density dependence often differ in their results for a particular time-series were investigated using modelled time-series of 20 generations in lenght. The test of Pollard et al. (1987) is the most reliable; it had the greatest power with the three forms of density dependent data investigated (mean detection rates of 50.8–61.1%) and was least influenced by the form of the density dependence in time-series. Bulmer's first test (Bulmer 1975) had slightly lower power (mean detection rates of 27.4–56.8%) and was more affected by the form of density dependence present in the data. The mean power of the other tests was lower and detection rates were more variable. Rates were 24.6–46.2% for regression of k-value on abundance, 6.4–32.6% for regression of k-value on logarithmic abundance and 0.2–13.7% for Bulmer's second test (Bulmer 1975). Bulmer's second test is not useful because of low power. For one method, regression of k-value on abundance. density dependence was detected in 19.9% of timeseries generated using a random-walk model. For regression of k-value on logarithmically-transformed abundance the equivalent figure was 18.3% of series. These rates of spurious detection were significantly (P<0.001) greater than the generally accepted 5% level of type 1 errors and so these methods are not suitable for the analysis of time-series data for density dependence. Levels of spurious detection (from random-walk data) were around the 5% level and hence were acceptable for Bulmer's first test, Bulmer's second test, and the tests of Pollard et al. (1987), Reddinguis and den Boer (1989) and Crowley (1992). For all tests, except Bulmer's second test, the rate of detection and the amount of autocorrelation in time-series were negatively correlated. The degree of autocorrelation accounted for as much as 59.5–77.9% of the deviance in logit proportion detection for regression of k-value on abundance, Bulmer's first test, and the tests of Pollard et al. and Reddingius and den Boer. For regression of k-value on abundance this relationship accounted for less of the deviance (29.4%). Independent effects of density dependence were largely absent. It is concluded that these are tests of autocorrelation, not density dependence (or limitation). Autocorrelation was found to become positive (which is similar to values from random-walk data) as the intrinsic growth rate became either small or large. As the strength of density dependence (in the discrete exponential logistic equation) is dependent on the product of the intrinsic growth rate and the density dependent parameter it is unclear whether this is because of variation in the strength of density dependent mortality or reproduction per se. However, small values of the intrinsic grwoth rate cause the amount of variation in the data to become small, which might hinder detection of density dependence, and large values of the intrinsic growth rate are coincident with determinstic chaos which hinders detection. The user of these tests for density dependence should be aware of their potential weakness when variation within time-series is small (which itself is difficult to judge) or if the intrinsic growth rate is large so that chaotic dynamics might result. Power and levels of variability in rates of detection using Reddingius and den Boer's test were intermediate between those of the test of Pollard et al. and Bulmer's first test. This, combined with the strong relationship between rates of detection of limitation and the value of the autocorrelation coefficient, make testing for limitation similar to testing for density dependence. Crowley's test of attraction gave the widest range of mean detection rates from density dependent data of all the tests (20.4–60.6%). The relative rates of detection for the three forms of density dependent data were opposite to those found for Bulmer's first test and the test of Pollard et al. I conclude that testing for attraction is a complementary concept to testing for density dependence. As dynamics represented in time-series generated using a stochastic form of the exponential logistic equation became chaotic, Bulmer's first test, the test of Pollard et al. and regression of k on abundance failed to detect density dependence reliably. Conversely, Crowley's test was capable of detecting attraction with a power between 96 and 100% with time-series containing both stochastically and deterministically chaotic dynamics. This difference from other tests is in agreement with the lower influence of autocorrelation.  相似文献   

2.
A randomization procedure is proposed which allows statistical tests to be combined into a single test to maintain specified and acceptable levels of false detection. This method was applied to the problem of detecting density dependence in 135 unpublished time-series (of 10 generations) from insect populations, and to simulated density-dependent and density-independent data, so that the correctness of observed levels of detection from the published data could be verified. To allow the application of the randomization procedure to Bulmer's (1975) tests and Varley and Gradwell's (1960) test, these were recast as randomization tests. The randomization procedure was tested with 39 combinations of tests for density dependence (and limitation/attraction); it generally producedcombined tests with levels of detection that were intermediate between detection levels of the constituent tests (and hence was limite by these). The specified rate of false detection (5%) was never exceeded (by more than 1%) when combined tests were applied to time-series from a random-walk model. Two different combinations of tests produced levels of detection from the published time-series which were slightly greater than their constituent tests when they were combined into single tests. These were the randomized form of Bulmer's (1975) first test with the tests of Pollard et al. (1987) and Reddingius and den Boer (1989) with the randomized form of Bulmer's second test. The combination of Bulmer's first and Pollard et al.'s test produced a greater level of detection (21.5%) than any other single test or combination of tests. These results were confirmed by the analysis of modelled density dependent data. Although the increase in power of combinations of tests over single tests is small with the data we used, the combined tests (listed above) had rates of detection that were less influenced by the form of data (of two forms of density-dependent data) than were their constituent tests. Hence, it appears that the combined tests are of greater generality than single test statistics. The method presented here for combining several statistical tests into a single randomization test is applicable in many other areas of ecology where we wish to apply several tests and take the most probable result of these; and if the tests being conducted are, or can be expressed as, randomization tests.  相似文献   

3.
Summary Principal and reduced major axes, and Bulmer's (1975) tests have been suggested as methods for detecting the presence of density dependence in a series of population censuses that are unsuitable for analysis by alternative means e.g. by k-factor analysis. These alternative methods are tested using census data, some of which are previously unpublished, from natural populations known from independent evidence to be subject to density dependent processes. All the methods fail to detect density dependence reliably, irrespective of sample size and the dynamics of the population. We conclude that none of the methods tested is sufficiently reliable to be useful as a test of density dependence in sequential censues of animal populations.  相似文献   

4.
Wu CC  Amos CI 《Human heredity》2003,55(4):153-162
Genetic linkage analysis is a powerful tool for the identification of disease susceptibility loci. Among the most commonly applied genetic linkage strategies are affected sib-pair tests, but the statistical properties of these tests have not been well characterized. Here, we present a study of the distribution of affected sib-pair tests comparing the type I error rate and the power of the mean test and the proportion test, which are the most commonly used, along with a novel exact test. In contrast to existing literature, our findings showed that the mean and proportion tests have inflated type I error rates, especially when used with small samples. We developed and applied corrections to the tests which provide an excellent adjustment to the type I error rate for both small and large samples. We also developed a novel approach to identify the areas of higher power for the mean test versus the proportion test, providing a wider and simpler comparison with fewer assumptions about parameter values than existing approaches require.  相似文献   

5.
Behavioural studies are commonly plagued with data that violate the assumptions of parametric statistics. Consequently, classic nonparametric methods (e.g. rank tests) and novel distribution-free methods (e.g. randomization tests) have been used to a great extent by behaviourists. However, the robustness of such methods in terms of statistical power and type I error have seldom been evaluated. This probably reflects the fact that empirical methods, such as Monte Carlo approaches, are required to assess these concerns. In this study we show that analytical methods cannot always be used to evaluate the robustness of statistical tests, but rather Monte Carlo approaches must be employed. We detail empirical protocols for estimating power and type I error rates for parametric, nonparametric and randomization methods, and demonstrate their application for an analysis of variance and a regression/correlation analysis design. Together, this study provides a framework from which behaviourists can compare the reliability of different methods for data analysis, serving as a basis for selecting the most appropriate statistical test given the characteristics of data at hand. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

6.
Summary This is a comment on a note by Solow (1990). It is shown that Solow's simulation results indicate that Bulmer's test for density dependence is non-robust to a particular kind of second-order Markovity that might well be overlooked by an ecologist. It is suggested that Solow's claim that Bulmer's test is insensitive is not wholly justified. Some scepticism concerning the applicability of statistical testing theory to animal population data is expressed.Communication no. 410 of the Biological Station, Wijster  相似文献   

7.
We present two tests for seasonal trend in monthly incidence data. The first approach uses a penalized likelihood to choose the number of harmonic terms to include in a parametric harmonic model (which includes time trends and autogression as well as seasonal harmonic terms) and then tests for seasonality using a parametric bootstrap test. The second approach uses a semiparametric regression model to test for seasonal trend. In the semiparametric model, the seasonal pattern is modeled nonparametrically, parametric terms are included for autoregressive effects and a linear time trend, and a parametric bootstrap test is used to test for seasonality. For both procedures, a null distribution is generated under a null Poisson model with time trends and autoregression parameters.We apply the methods to skin melanoma incidence rates collected by the surveillance, epidemiology, and end results (SEER) program of the National Cancer Institute, and perform simulation studies to evaluate the type I error rate and power for the two procedures. These simulations suggest that both procedures are alpha-level procedures. In addition, the harmonic model/bootstrap test had similar or larger power than the semiparametric model/bootstrap test for a wide range of alternatives, and the harmonic model/bootstrap test is much easier to implement. Thus, we recommend the harmonic model/bootstrap test for the analysis of seasonal incidence data.  相似文献   

8.
J. Reddingius 《Oecologia》1996,108(4):640-642
Several statistical tests for density dependence have been proposed in the literature, and so in any practical case the question poses itself which one of these tests to choose. This paper offers a few remarks additional to those made by Fox and Ridsill-Smith (1995) and others. Parametric statistical tested are based on a fully specified mathematical model. Examples of such tests are Bulmer's (1975) first test, and the test of Dennis and Taper (1994). Distribution-free tests are based on far less stringent assumptions. An example of such a test is the one proposed by Pollard et al. (1987). The choice between parametric tests can best be made by considering which one of the underlying mathematical models ist most plausible. If all models are almost equally plausible, considerations of computational requirement and ease of application may be important. Strong doubts concerning the plausibility of mathematical models may lead one to prefer a distribution-free test. An important feature of any test is its power, i.e. the probability of its rejecting the null hypothesis when this hypothesis is not true. Other things being equal, tests are preferable when they have superior powers. But power of a test depends on the true state of nature, and the only way to study power quantitatively is by assuming some mathematical model as approximately representing this true state. As any mathematical model can at best only be an approximation to the situation in nature, a mathematical model and the statistical tests based on it should be robust against small deviations from model assumptions. Solow (1990) showed that Bulmer's test is not robust with respect to the assumption that the residuals in the underlying autoregression model be stochastically independent. Contrary to what was suggested by Fox and Ridsill-Smith (1995), who misinterpreted some statements in Reddingius (1990), the present author thinks this is a serious shortcoming of this test since an ecologist cannot assume a priori that important density-independent ecological factors are not somehow serially correlated. Moreover, he is rather sceptical about the usefulness of statistical tests for density dependence. They have contributed more to misunderstandings than to a significant increase in ecological insight. In any case, statistical tests are designed to test hypotheses that are stated before data are collected, and the question which test to use also has to be answered before the data have been collected. Designing and using statistical tests a posteriori to detect things in data mainly leads to confusion and controversy.  相似文献   

9.
A test for density dependence in time-series data allowing for weather effects is presented. The test is based on a discrete time autoregressive model for changes in population density with a covariate for the effects of weather. The distribution of the test statistic on the null hypothesis of density independence is obtained by parametric bootstrapping. A computer simulation exercise is used to demonstrate the gain in statistical power by allowing for weather effects. Application of the method to time-series data on three species of butterflies and two species of songbirds showed stronger evidence of density dependence than two standard tests. Received: 4 October 1996 / Accepted: 4 August 1997  相似文献   

10.
为比较稀有变异遗传关联研究中常用负担检验方法(CMC、WST、SUM及其扩展)在不同遗传情境下的统计性能,本文通过计算机模拟产生不同样本量、连锁不平衡(linkage disequilibrium, LD)参数、混杂非关联变异的个数和不同效应的关联变异等条件的稀有变异病例对照数据集,运用各种负担检验方法进行分析,分别计算各方法的一类错误和效能。结果表明,各方法一类错误均在0.05附近;当稀有变异效应方向一致时,除aSUM法外,LD参数越大、混杂非关联变异越少、各法效能越高;当效应方向不一致时,各法效能则显著降低。除强LD外,有方向考虑的方法效能均比无方向考虑的方法高,且样本量越大效能越高。负担检验的统计性能受效应大小和方向、噪音变异和连锁不平衡等多种因素影响。在实际应用中,在各类方法选择、确定集合单位,权重等时最好结合遗传变异的生物信息先验以提高研究效能。  相似文献   

11.
The discovery that microsatellite repeat expansions can cause clinical disease has fostered renewed interest in testing for age-at-onset anticipation (AOA). A commonly used procedure is to sample affected parent-child pairs (APCPs) from available data sets and to test for a difference in mean age at onset between the parents and the children. However, standard statistical methods fail to take into account the right truncation of both the parent and child age-at-onset distributions under this design, with the result that type I error rates can be inflated substantially. Previously, we had introduced a new test, based on the correct, bivariate right-truncated, age-at-onset distribution. We showed that this test has the correct type I error rate for random APCPs, even for quite small samples. However, in that paper, we did not consider two key statistical complications that arise when the test is applied to realistic data. First, affected pairs usually are sampled from pedigrees preferentially selected for the presence of multiple affected individuals. In this paper, we show that this will tend to inflate the type I error rate of the test. Second, we consider the appropriate probability model under the alternative hypothesis of true AOA due to an expanding microsatellite mechanism, and we show that there is good reason to believe that the power to detect AOA may be quite small, even for substantial effect sizes. When the type I error rate of the test is high relative to the power, interpretation of test results becomes problematic. We conclude that, in many applications, AOA tests based on APCPs may not yield meaningful results.  相似文献   

12.
Zhongxue Chen  Qingzhong Liu  Kai Wang 《Genomics》2019,111(5):1152-1159
Gene- and pathway-based variant association tests are important tools in finding genetic variants that are associated with phenotypes of interest. Although some methods have been proposed in the literature, powerful and robust statistical tests are still desirable in this area. In this study, we propose a statistical test based on decomposing the genotype data into orthogonal parts from which powerful and robust independent p-value combination approaches can be utilized. Through a comprehensive simulation study, we compare the proposed test with some existing popular ones. Our simulation results show that the new test has great performance in terms of controlling type I error rate and statistical power. Real data applications are also conducted to illustrate the performance and usefulness of the proposed test.  相似文献   

13.
It was shown recently using experimental data that it is possible under certain conditions to determine whether a person with known genotypes at a number of markers was part of a sample from which only allele frequencies are known. Using population genetic and statistical theory, we show that the power of such identification is, approximately, proportional to the number of independent SNPs divided by the size of the sample from which the allele frequencies are available. We quantify the limits of identification and propose likelihood and regression analysis methods for the analysis of data. We show that these methods have similar statistical properties and have more desirable properties, in terms of type-I error rate and statistical power, than test statistics suggested in the literature.  相似文献   

14.
Numerous statistical methods have been developed for analyzing high‐dimensional data. These methods often focus on variable selection approaches but are limited for the purpose of testing with high‐dimensional data. They are often required to have explicit‐likelihood functions. In this article, we propose a “hybrid omnibus test” for high‐dicmensional data testing purpose with much weaker requirements. Our hybrid omnibus test is developed under a semiparametric framework where a likelihood function is no longer necessary. Our test is a version of a frequentist‐Bayesian hybrid score‐type test for a generalized partially linear single‐index model, which has a link function being a function of a set of variables through a generalized partially linear single index. We propose an efficient score based on estimating equations, define local tests, and then construct our hybrid omnibus test using local tests. We compare our approach with an empirical‐likelihood ratio test and Bayesian inference based on Bayes factors, using simulation studies. Our simulation results suggest that our approach outperforms the others, in terms of type I error, power, and computational cost in both the low‐ and high‐dimensional cases. The advantage of our approach is demonstrated by applying it to genetic pathway data for type II diabetes mellitus.  相似文献   

15.
MOTIVATION: Although population-based association mapping may be subject to the bias caused by population stratification, alternative methods that are robust to population stratification such as family-based linkage analysis have lower mapping resolution. Recently, various statistical methods robust to population stratification were proposed for association studies, using unrelated individuals to identify associations between candidate genes and traits of interest. The association between a candidate gene and a quantitative trait is often evaluated via a regression model with inferred population structure variables as covariates, where the residual distribution is customarily assumed to be from a symmetric and unimodal parametric family, such as a Gaussian, although this may be inappropriate for the analysis of many real-life datasets. RESULTS: In this article, we proposed a new structured association (SA) test. Our method corrects for continuous population stratification by first deriving population structure and kinship matrices through a set of random genetic markers and then modeling the relationship between trait values, genotypic scores at a candidate marker and genetic background variables through a semiparametric model, where the error distribution is modeled as a mixture of Polya trees centered around a normal family of distributions. We compared our model to the existing SA tests in terms of model fit, type I error rate, power, precision and accuracy by application to a real dataset as well as simulated datasets.  相似文献   

16.
A common problem that is encountered in medical applications is the overall homogeneity of survival distributions when two survival curves cross each other. A survey demonstrated that under this condition, which was an obvious violation of the assumption of proportional hazard rates, the log-rank test was still used in 70% of studies. Several statistical methods have been proposed to solve this problem. However, in many applications, it is difficult to specify the types of survival differences and choose an appropriate method prior to analysis. Thus, we conducted an extensive series of Monte Carlo simulations to investigate the power and type I error rate of these procedures under various patterns of crossing survival curves with different censoring rates and distribution parameters. Our objective was to evaluate the strengths and weaknesses of tests in different situations and for various censoring rates and to recommend an appropriate test that will not fail for a wide range of applications. Simulation studies demonstrated that adaptive Neyman’s smooth tests and the two-stage procedure offer higher power and greater stability than other methods when the survival distributions cross at early, middle or late times. Even for proportional hazards, both methods maintain acceptable power compared with the log-rank test. In terms of the type I error rate, Renyi and Cramér—von Mises tests are relatively conservative, whereas the statistics of the Lin-Xu test exhibit apparent inflation as the censoring rate increases. Other tests produce results close to the nominal 0.05 level. In conclusion, adaptive Neyman’s smooth tests and the two-stage procedure are found to be the most stable and feasible approaches for a variety of situations and censoring rates. Therefore, they are applicable to a wider spectrum of alternatives compared with other tests.  相似文献   

17.
Riyan Cheng  Abraham A. Palmer 《Genetics》2013,193(3):1015-1018
We used simulations to evaluate methods for assessing statistical significance in association studies. When the statistical model appropriately accounted for relatedness among individuals, unrestricted permutation tests and a few other simulation-based methods effectively controlled type I error rates; otherwise, only gene dropping controlled type I error but at the expense of statistical power.  相似文献   

18.
The Mantel test, based on comparisons of distance matrices, is commonly employed in comparative biology, but its statistical properties in this context are unknown. Here, we evaluate the performance of the Mantel test for two applications in comparative biology: testing for phylogenetic signal, and testing for an evolutionary correlation between two characters. We find that the Mantel test has poor performance compared to alternative methods, including low power and, under some circumstances, inflated type‐I error. We identify a remedy for the inflated type‐I error of three‐way Mantel tests using phylogenetic permutations; however, this test still has considerably lower power than independent contrasts. We recommend that use of the Mantel test should be restricted to cases in which data can only be expressed as pairwise distances among taxa.  相似文献   

19.

Background

Spurious associations between single nucleotide polymorphisms and phenotypes are a major issue in genome-wide association studies and have led to underestimation of type 1 error rate and overestimation of the number of quantitative trait loci found. Many authors have investigated the influence of population structure on the robustness of methods by simulation. This paper is aimed at developing further the algebraic formalization of power and type 1 error rate for some of the classical statistical methods used: simple regression, two approximate methods of mixed models involving the effect of a single nucleotide polymorphism (SNP) and a random polygenic effect (GRAMMAR and FASTA) and the transmission/disequilibrium test for quantitative traits and nuclear families. Analytical formulae were derived using matrix algebra for the first and second moments of the statistical tests, assuming a true mixed model with a polygenic effect and SNP effects.

Results

The expectation and variance of the test statistics and their marginal expectations and variances according to the distribution of genotypes and estimators of variance components are given as a function of the relationship matrix and of the heritability of the polygenic effect. These formulae were used to compute type 1 error rate and power for any kind of relationship matrix between phenotyped and genotyped individuals for any level of heritability. For the regression method, type 1 error rate increased with the variability of relationships and with heritability, but decreased with the GRAMMAR method and was not affected with the FASTA and quantitative transmission/disequilibrium test methods.

Conclusions

The formulae can be easily used to provide the correct threshold of type 1 error rate and to calculate the power when designing experiments or data collection protocols. The results concerning the efficacy of each method agree with simulation results in the literature but were generalized in this work. The power of the GRAMMAR method was equal to the power of the FASTA method at the same type 1 error rate. The power of the quantitative transmission/disequilibrium test was low. In conclusion, the FASTA method, which is very close to the full mixed model, is recommended in association mapping studies.  相似文献   

20.
Hao K  Wang X 《Human heredity》2004,58(3-4):154-163
OBJECTIVES: Genotyping error commonly occurs and could reduce the power and bias statistical inference in genetics studies. In addition to genotypes, some automated biotechnologies also provide quality measurement of each individual genotype. We studied the relationship between the quality measurement and genotyping error rate. Furthermore, we propose two association tests incorporating the genotyping quality information with the goal to improve statistical power and inference. METHODS: 50 pairs of DNA sample duplicates were typed for 232 SNPs by BeadArray technology. We used scatter plot, smoothing function and generalized additive models to investigate the relationship between genotype quality score (q) and inconsistency rate (?) among duplicates. We constructed two association tests: (1) weighted contingency table test (WCT) and (2) likelihood ratio test (LRT) to incorporate individual genotype error rate (epsilon(i)), in unmatched case-control setting. RESULTS: In the 50 duplicates, we found q and ? were in strong negative association, suggesting the genotypes with low quality score were more likely to be mistyped. The WCT improved the statistical power and partially corrects the bias in point estimation. The LRT offered moderate power gain, but was able to correct the bias in odds ratio estimation. The two new methods also performed favorably in some scenarios when epsilon(i) was mis-specified. CONCLUSIONS: With increasing number of genetic studies and application of automated genotyping technology, there is a growing need to adequately account for individual genotype error rate in statistical analysis. Our study represents an initial step to address this need and points out a promising direction for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号