首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant induced responses are activated by multiple biotic and abiotic stresses, and may affect the interactions between a plant and phytophagous insects. The objective of this work was to evaluate the effects of different stresses inflicted to potato plants (Solanum tuberosum) on the potato aphid (Macrosiphum euphorbiae). Abiotic wounding, biotic wounding by Leptinotarsa decemlineata and treatment with volatile methyl jasmonate (MeJA) were evaluated with regard to the orientation behaviour, the feeding behaviour and the development of the potato aphids. Dual‐choice olfactometry showed that plants treated with MeJA lost their attractiveness for the potato aphids, while both abiotic and biotic wounding did not alter the orientation of aphids. Electropenetrography revealed that the feeding behaviour of aphids was only slightly disturbed by a previous L. decemlineata wounding, while it was highly disturbed by mechanical wounding and MeJA treatment. Aphid nymph survival was reduced on mechanically wounded plants, the pre‐reproductive period was lengthened and the fecundity reduced on plants treated with MeJA. Our results bring new information about the effects of various stresses inflicted to S. tuberosum on M. euphorbiae. We showed that wounding and MeJA treatment induced an antixenosis resistance in potato plants against M. euphorbiae, which may influence aphid colonization processes.  相似文献   

2.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

3.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

4.
The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the potato important pests; it is the most efficient vector of potato viruses. Myzus persicae harbors the endosymbiotic bacteria Buchnera aphidicola which supplements their diet. There is increasing evidence that B. aphidicola is involved in plant–aphid interactions and we previously demonstrated that B. aphidicola disruption (aposymbiosis) affected the probing behavior of M. persicae on radish plants, delaying host plant acceptance. In this work, we evaluated the effect of aposymbiosis on the probing behavior of M. persicae on 2 Solanum species with different compatibility with M. persicae, Solanum tuberosum (susceptible) and Solanum stoloniferum (resistant) with the electrical penetration graph technique (EPG). To disrupt B. aphidicola, rifampicin was administered to aphids through artificial diets. Aposymbiotic aphids, on both plant species, showed increased pathway activities, mechanical problems with the stylets, and delayed salivation in the phloem. The extended time in derailed stylet mechanics affected the occurrence of most other probing activities; it delayed the time to the first phloem phase and prevented ingestion from the phloem. The effect of aposymbiosis was more evident in the compatible interaction of M. persicaeS. tuberosum, than in the incompatible interaction with S. stoloniferum, which generated the M. persicaeS. tuberosum interaction to become incompatible. These results confirm that B. aphidicola is involved in the plantaphid interaction in relation to plant acceptance, presumably through a role in stylets penetration in the plant.  相似文献   

5.
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels.  相似文献   

6.
Summary The potato aphid, Macrosiphum euphorbiae Thomas, is an important pest of tomato, Lycopersicon esculentum Mill., because it transmits tomato viruses and directly reduces crop yields by its feeding. This study was conducted to determine whether the wild tomato species, Lycopersicon pennellii (Corr.) D'Arcy, would be useful as a source of potato aphid resistance for tomato. Type IV trichome density and aphid resistance were assessed in six generations (P1, P2, F1, F2, BC1P1, and BC1P2) from crosses between L. pennellii (LA 716) and two tomato cultivars, New Yorker and VF Vendor. Weighted leastsquares were used in joint scaling tests to estimate the relative importance of gene effects on type IV trichome density and potato aphid resistance of the hybrids. A simple additive-dominance model adequately explained the variation in type IV trichome density. Models which included digenic epistatic effects were required to explain the variation in aphid resistance. Standard unit heritability estimates of aphid resistance in the backcross to L. esculentum were obtained by regression of BC1F2 off-spring families on BC1F1 parents. Regression coefficients and heritability estimates varied between years with the level and uniformity of the aphid infestation. In the 1985–1986 growing seasons, when aphid infestations were uniform, aphid resistance exhibited a moderate level of heritability (29.8% ± 14.1% and 47.1% ± 11.5% in New Yorker and VF Vendor backcross populations, respectively). The non-uniform aphid infestation of 1984 resulted in lower heritability estimates in the 1984–1985 growing seasons (16.1% ± 15.7% and 21.9% ± 14.8% in the New Yorker and VF Vendor backcross populations, respectively). Selection for potato aphid resistance would probably be most efficient if it were delayed until gene combinations are fixed in later generations, because of the large epistatic effects and the low heritability of this trait in seasons with variable aphid infestations.  相似文献   

7.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

8.
1. The concept of plant defence syndrome states that plant species growing in similar biotic or abiotic constraints should have convergent defensive traits. This article is a first step to test the prediction of this concept, by conducting experiments on wild Solanum species (or accessions) that originated from the Andes. The nature and the tissue localisation of the resistance of five wild Solanum species known to be resistant against the aphids Myzus persicae and Macrosiphum euphorbiae were determined by olfactometry and electrical penetration graph experiments. 2. Volatile organic compounds may contribute to wild Solanum resistance, depending on Solanum accessions and aphid species. Volatiles of S. bukasovii and S. stoloniferum PI 275248 were not attractive to M. persicae, whereas S. bukasovii was repulsive to M. euphorbiae. In contrast, volatiles of S. stoloniferum PI 275248 were attractive for M. euphorbiae. 3. Some wild Solanum species presented a generalised resistance in all plant tissues, so as for S. bukasovii and S. stoloniferum PI 275248 against M. persicae. However, except for S. bukasovii which was susceptible to M. euphorbiae, all tested Solanum species presented a phloem‐based antixenosis resistance against the two aphid species. 4. A review of articles focused on the nature of resistance of wild Solanum species against aphids corroborated with our results, i.e. a phloem‐based antixenosis resistance against aphids is the rule concerning the system aphids–wild Solanum species.  相似文献   

9.
Oviposition by aphidophagous Syrphidae varies with the size of aphid infestations and different syrphid species have different optimum aphid population sizes for oviposition. In one experiment using potted brussels sprout plants infested with Brevicoryne brassicae L., Platycheirus manicatus (Meig.) preferred about 100 aphids per plant, P. scutatus (Meig.) about 1000 aphids per plant and Syrphus ribesii (L.) about 2000 aphids per plant. These preferences were less clear in certain Platycheirus species (e.g. P. peltatus (Meig.)), than in Syrphus species (e.g. S. luniger Meig.). Once a plant has been selected for oviposition there may still be selection of suitable colonies on that plant. For a given aphid population, S. luniger preferred a small number of large aggregates to a larger number of smaller ones, whereas S. balteatus (Deg.) preferred the opposite. The tendency of the different species to select aphid populations of different sizes and distributions is likely to decrease interspecific competition.  相似文献   

10.
Effects of honeydew sugar composition on the longevity of Aphidius ervi   总被引:1,自引:0,他引:1  
Feeding on sugar‐rich foods such as nectar and honeydew is important for survival of many adult parasitoids. Especially in agricultural systems, honeydew is often the most prevalent carbohydrate source. However, relative to plant nectar, honeydew may be relatively unsuitable, as a result of an unfavourable sugar composition or the presence of secondary plant compounds. We studied survival of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) on honeydew collected from various aphid species feeding on potato (Solanum tuberosum L., cv. Desiree) (Solanaceae), wheat (Triticum aestivum L., cv. Bobwhite) (Poaceae), or artificial diet, as well as the sugar composition of the different honeydews. Honeydews from the tested aphid species on potato, wheat, or artificial diet were found to be relatively suitable food sources for adult A. ervi, although not always as suitable as a 2 M sucrose solution. There were differences in honeydew sugar composition among the different aphid species on the various host plants. Multivariate statistics showed that the factor ‘aphid species’ had a significant influence on the sugar composition of the honeydew, explaining 27% of the variation in the potato system and 89% in the wheat system. When exploring the relationship between carbohydrate composition of the honeydews from aphids on potato and wheat plants, and their nutritional value for A. ervi, data revealed that differences in parasitoid longevity can to some extent be explained by carbohydrate composition. Furthermore, our results confirm that sucrose and its hexose components glucose and fructose are very suitable carbohydrate sources for hymenopteran parasitoids and show that parasitoid survival on an equimolar solution of the two monosaccharides glucose and fructose does not exceed performance on the disaccharide sucrose.  相似文献   

11.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

12.
Viral diseases non-persistently transmitted by aphids are of great economic importance in several annual crops. Transmission efficiency of these non-persistent phytoviruses is dependant on vector efficiency (i.e. vector intrinsic ability to transmit the virus) but also on the vector activity that implies the early steps of aphid host plant selection process (i.e. brief intracellular stylet punctures after landing) and to their interplant movement ability. In Europe, Macrosiphum euphorbiae (Thomas 1878) is considered as one of the most serious virus vectors on potato (Solanum tuberosum L. 1753). Nevertheless, several alate aphid species that do not colonise potato plants are trapped in potato crops. Therefore, we investigated, through laboratory experiments, vector activity of one potato colonising aphid, M. euphorbiae, and two non-colonising potato aphids, the bird cherry-oat aphid Rhopalosiphum padi (L. 1758) and the pea aphid Acyrthosiphon pisum (Harris 1776). A settling experiment was used to evaluate dispersal activity, and the electrical penetration graph (EPG) technique was used to investigate probing activity on potato plants. Results showed that M. euphorbiae exhibited a better vector activity than other two aphid species in terms of landing and probing. By contrast, interplant movements were only recorded on non-colonising aphids, suggesting a better vector activity than M. euphorbiae in terms of locomotive behaviour. These data confirm the involvement of A. pisum and R. padi in the spread of non-persistent viruses.  相似文献   

13.
Switchgrass, Panicum virgatum L., has been targeted as a bioenergy feedstock. However, little is currently known of the mechanisms of insect resistance in this species. Here, two no-choice studies were performed to determine the categories (antibiosis and tolerance) and relative levels of resistance of three switchgrass populations (Kanlow–lowland ecotype, Summer–upland ecotype, and third generation derivatives between Kanlow?×?Summer plants, K×S) previously identified with differential levels of resistance to the greenbug, Schizaphis graminum (Rondani), and yellow sugarcane aphid, Sipha flava (Forbes). No-choice studies indicated that Kanlow possessed multi-species resistance, with high levels of antibiosis to both aphid species, based on aphid survival at 7 and 14 days after aphid introduction and cumulative aphid days, while K×S possessed low-to-moderate levels of antibiosis to S. flava. Further, functional plant loss indices based on plant height and biomass indicated that tolerance is an important category of resistance for Summer plants to S. graminum. These studies also indicated that Summer lacks both tolerance and antibiosis to S. flava, relative to the other switchgrasses tested, whereas K×S lack tolerance and antibiosis to S. graminum. These studies are the first attempt to analyze the categories of resistance in switchgrass and provide critical information for characterizing the biological mechanisms of resistance and improving our knowledge of the plant–insect interactions within this system.  相似文献   

14.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

15.
Ninety accessions of non‐tuber bearing Solanaceae were screened for (i) resistance to and (ii) stimulatory effect on juvenile hatch of potato cyst nematodes, and (iii) their growth under temperate climatic conditions. All plant species belonging to the genus Solanum tested induced hatching but this effect was most pronounced for plant species of the Solanum nigrum complex. Hatching of juveniles was hardly or not stimulated by other plant genera of the Solanaceae. Solanum sisymbriifolium combined a high hatching effect with complete resistance to both Globodera rosiochiensis and G pallida. Two S. nigrum varieties showed full resistance to G rostochiensis and a high level of resistance to G pallida. Moreover, S. sisymbriifolium and the two varieties of S. nigrum performed very well under Dutch field conditions and, therefore, they are suggested as candidate trap crops for the control of potato cyst nematodes.  相似文献   

16.
Tuber resistance can contribute to current management strategies against the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), in field and stored potatoes. Wild potatoes represent a potential source of novel resistance traits against the moth. We assessed resistance in three wild potato species, Solanum multiinterruptum Bitt., Solanum sparsipilum (Bitt.) Juz. & Buk., and Solanum wittmackii Bitt. against neonate and developing tuber moth larvae. All three species had high levels of resistance but accessions of S. sparsipilum and S. wittmackii were significantly more resistant. Resistance in S. multiinterruptum was generally concentrated in the tuber periderm, whereas in S. sparsipilum and S. wittmackii resistance was mainly cortex‐based. Unidentified cortex‐resistance factors in all three species reduced survival and increased larval and pupal development times, but had no apparent effects on the pupal weights of survivors. A high proportion of larvae abandoned or died within tubers of S. wittmackii, which has particularly high levels of unidentified cortex‐based defenses. Resistance decreased in S. multiinterruptum and S. sparsipilum as tubers sprouted but was more stable in S. wittmackii. Periderm‐based resistance was more stable than cortex‐based resistance in S. multiinterruptum during sprouting. In contrast, cortex‐based resistance was stable in tubers of S. wittmackii as these sprouted, and resistance may have increased on some older sprouting tubers. Solanum multiinterruptum and S. sparsipilum are proposed as potential sources of resistance against the potato tuber moth.  相似文献   

17.
Summary Samples of shoots ofPistacia lentiscus carrying galls of the aphid,Aploneura lentisci, were collected at three localities in Israel. Shoots growing near pruning scars carried more galls than elsewhere on the plant, but these galls weighed less and contained fewer aphids (smaller clones). The proportion of empty galls increased with gall density. Crowding of galls at such sites may be due to the early burst of buds at the time of aphid emergence from the overwintering eggs, and not to active search for preferred sites. Shoots bearing larger numbers of leaves carried heavier galls, which contained larger aphid clones. The position of the galled leaf on the shoot had no effect on gall weight nor on clone size. The physiological condition of the plant may be an important environmental (ecological) factor affecting the variation in clone-size and in aphid morphology among galls.  相似文献   

18.
Solanum ×  michoacanum (Bitter.) Rydb. is a diploid, 1 EBN (Endosperm Balance Number) nothospecies, a relative of potato originating from the area of Morelia in Michoacán State of Mexico that is believed to be a natural hybrid of S. bulbocastanum × S. pinnatisectum. Both parental species and S. michoacanum have been described as sources of resistance to Phytophthora infestans (Mont.) de Bary. The gene for resistance to potato late blight, Rpi-mch1, originating from S. michoacanum was mapped to the chromosome VII of the potato genome. It confers high level of resistance since the plants possessing it showed only small necrotic lesions or no symptoms of the P. infestans infection and we could ascribe over 80% of variance observed in the late blight resistance test of the mapping population to the effect of the closest marker. Its localization on chromosome VII may correspond to the localization of the Rpi1 gene from S. pinnatisectum. When mapping Rpi-mch1, one of the first genetic maps made of 798 Diversity Array Technology (DArT) markers of a plant species from the Solanum genus and the first map of S. michoacanum, a 1EBN potato species was constructed. Particular chromosomes were identified using 48 sequence-specific PCR markers, originating mostly from the Tomato-EXPEN 2000 linkage map (SGN), but also from other sources. Recently, the first DArT linkage map of 2 EBN species Solanum phureja has been published and it shares 197 DArT markers with map obtained in this study, 88% of which are in the concordant positions.  相似文献   

19.
The diversification of resistant potato varieties at a landscape level could slow adaptation by Phthorimaea operculella to potato resistance and promote sustainable crop protection. In this study, we assessed wild potato species as novel sources of foliage and tuber resistance against P. operculella. Tuber resistance was quantified for 136 and foliage resistance for 54 potato accessions representing 14 and nine potato species, respectively. Several accessions were highly resistant to moth damage in tubers and/or foliage. In particular, Solanum chiquidenum and Solanum sandemanii were highly resistant to damage in tubers. Several accessions of Solanum multiinterruptum and a small number of accessions of Solanum bukasovii, Solanum berthaultii, Solanum sparsipilum and Solanum wittmackii also had highly resistant tubers. Larval survival on foliage of S. bukasovii and S. chiquidenum was generally low. New resistance sources are listed, and insect performance on the plants is described with possible resistance mechanisms. The study also examined potential trade‐offs associated with resistance. Tuber resistance was negatively correlated with the number and weight of tubers produced per plant, but positively correlated with the length of dormancy across accessions, indicating that, although long dormancy is not a prerequisite for resistance, species and accessions with extended dormancy will have more resistant tubers. Tuber and foliage resistance were generally positively correlated across all accessions; however, among accessions from within a potato species, there were negative (S. berthaultii), positive (S. chiquidenum) and non‐significant (S. bukasovii) relations. These results indicate that, besides identifying novel resistance sources, an improved understanding of the mechanisms and inherent trade‐offs associated with tuber and foliage resistance will improve the efficiency of potato breeding programmes aimed at enhancing resistance against P. operculella.  相似文献   

20.
Solanum bulbocastanum, a wild, diploid (2n=2x=24) Mexican species, is highly resistant to Phytophthora infestans, the fungus that causes late blight of potato. However this 1 EBN species is virtually impossible to cross directly with potato. PEG-mediated fusion of leaf cells of S. bulbocastanum PI 245310 and the tetraploid potato line S. tuberosum PI 203900 (2n=4x=48) yielded hexaploid (2n= 6x=72) somatic hybrids that retained the high resistance of the S. bulbocastanum parent. RFLP and RAPD analyses confirmed the hybridity of the materials. Four of the somatic hybrids were crossed with potato cultivars Katahdin or Atlantic. The BC1 progeny segregated for resistance to the US8 genotype (A-2 mating type) of P. Infestans. Resistant BC1 lines crossed with susceptible cultivars again yielded populations that segregated for resistance to the fungus. In a 1996 field-plot in Wisconsin, to which no fungicide was applied, two of the BC1 lines, from two different somatic hybrids, yielded 1.36 and 1.32 kg/plant under a severe late-blight epidemic. In contrast, under these same conditions the cultivar Russet Burbank yielded only 0.86 kg/plant. These results indicate that effective resistance to the late-blight fungus in a sexually incompatible Solanum species can be transferred into potato breeding lines by somatic hybridization and that this resistance can then be further transmitted into potato breeding lines by sexual crossing. Received: 27 October 1997 / Accepted: 11 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号