共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulose dissolution solvent used in Lyocell process for cellulose fiber preparation, N-methylmorpholine-N-oxide (NMMO) monohydrate, was demonstrated to be an effective agent for sugarcane bagasse pretreatment. Bagasse of 20wt% was readily dissolved in NMMO monohydrate at 130 degrees C within 1h. After dissolution, bagasse could be regenerated by rapid precipitation with water as a porous and amorphous mixture of its original components. The regenerated bagasse exhibited a significant enhancement on enzymatic hydrolysis kinetic. Not only the reducing sugars releasing rate but also hydrolysis yield was enhanced at least twofold as compared with that of untreated bagasse. The cellulose fraction of regenerated bagasse was nearly hydrolyzed to glucose after 72h hydrolysis with Cellulase AP3. The recycled NMMO demonstrated the same performance as the fresh one on bagasse pretreatment for hydrolysis enhancement. The regenerated bagasse was directly used in simultaneous saccharification and fermentation (SSF) for ethanol production by Zymomonas mobilis. No negative effect on ethanol fermentation was observed and ethanol yield approximately 0.15 g ethanol/g baggasse was achieved. 相似文献
2.
summary The rate of enzymic hydrolysis of steam-exploded bagasse was found to decrease linearly with increasing concentration of glucose and ethanol, with complete cessation of reaction predicted in the presence effects of glucose and ethanol were found to be additive. The significantly greater tolerance of the enzyme to ethanol can be utilised in the simultaneous hydrolysis and fermentation of bagasse cellulose to improve hydrolysis rate. 相似文献
3.
AbstractIn Brazil, sugarcane biomass is generated in large amounts. Sugarcane bagasse and straw are considered as an important feedstock for renewable energy and biorefinery. This paper aims to study the generation of monosaccharides (C5 and C6) from sugarcane biomass via processing bagasse or straw and mixtures of both materials (bagasse:straw 3:1, 1:1 and 1:3). Samples were pretreated with sulfuric acid which resulted in approximately 90% of hemicellulose solubilization, corresponding to around 58 g L ? 1 of xylose. Pretreated straw showed greater susceptibility to enzymatic hydrolysis in comparison to bagasse, as shown by glucose yields of 76% and 65%, respectively, whereas the mixtures showed intermediate yields. Thus, one strategy to balance sugarcane biomass availability and possibly increasing 2G ethanol production would be to use bagasse–straw mixtures in appropriate ratios according to market fluctuations. Untreated and pretreated samples were analyzed using X-ray diffraction, but there was no relationship to enzymatic hydrolysis. 相似文献
4.
The present study investigates the operational conditions for organosolvent pretreatment and hydrolysis of rice straw. Among
the different organic acids and organic solvents tested, acetone was found to be most effective based on the fermentable sugar
yield. Optimization of process parameters for acetone pretreatment were carried out. The structural changes before and after
pretreatment were investigated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared (FTIR) analysis.
The X-ray diffraction profile showed that the degree of crystallinity was higher for acetone pretreated biomass than that
of the native. FTIR spectrum also exhibited significant difference between the native and pretreated samples. Under optimum
pretreatment conditions 0.458 g of reducing sugar was produced per gram of pretreated biomass with a fermentation efficiency
of 39%. Optimization of process parameters for hydrolysis such as biomass loading, enzyme loading, surfactant concentration
and incubation time was done using Box–Benhken design. The results indicate that acetone pretreated rice straw can be used
as a good feed stock for bioethanol production. 相似文献
5.
The objective of this study was to find a pretreatment process that enhances enzymatic conversion of biomass to sugars. Rapeseed straw was pretreated by two processes: a wet process involving wet milling plus a popping treatment, and a dry process involving popping plus dry milling. The effects of the pretreatments were studied both in terms of structural and compositional changes and change in susceptibility to enzymatic hydrolysis. After application of the wet and dry processes, the amounts of cellulose and xylose in the straw were 37-38% and 14-15%, respectively, compared to 31% and 12% in untreated counterparts. In enzymatic hydrolysis performance, the wet process presented the best glucose yield, with a 93.1% conversion, while the dry process yielded 69.6%, and the un-pretreated process yielded <20%. Electron microscopic studies of the straw also showed a relative increase in susceptibility to enzymatic hydrolysis with pretreatment. 相似文献
6.
Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively. 相似文献
7.
Considering the practical technology-economy of glycerol processing from oleochemicals industry, the ensuing work was proposed to further explore the atmospheric aqueous glycerol autocatalytic organosolv pretreatment (AAGAOP) to improve the enzymatic hydrolysis of lignocellulosic biomass. With the liquid-solid ratio of 20 g g(-1) at 220 degrees C for 3h, the AAGAOP enabled wheat straw to remove approximately 70% hemicelluloses and approximately 65% lignin, with approximately 98% cellulose retention. The pretreated fiber was achieved with approximately 90% of the enzymatic hydrolysis yield after 48 h. At oven-drying, dehydration was likely to cause the hornification of fiber, which was responsible for the low enzymatic hydrolysis of dried fiber. With SEM observations, the AAGAOP disrupted wheat straw into thin and fine fibrils, with a small average size and more surface area. The AAGAOP technique, as a novel strategy, enhanced the enzymatic hydrolysis of lignocellulosic biomass by removing the chemically compositional barrier and altering the physically structural impediment. 相似文献
8.
Bioprocess and Biosystems Engineering - Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of... 相似文献
10.
Rice straw has recently attracted interest in Japan as a potential source of raw material for ethanol production. Wet disk milling, a continuous pretreatment to enhance the enzymatic digestibility of rice straw, was compared with conventional ball milling and hot-compressed water treatment. Pretreated rice straw was evaluated by enzymatic hydrolysis using Acremonium cellulase and characterized by X-ray diffraction and scanning electron microscopy. Glucose and xylose yields by wet disk milling, ball milling, and hot-compressed water treatment were 78.5% and 41.5%, 89.4% and 54.3%, and 70.3% and 88.6%, respectively. Wet disk milling and hot-compressed water treatment increased sugar yields without decreasing their crystallinity. The feature size of the wet disk milled rice straw was similar to that of hot-compressed water-treated rice straw. The energy consumption of wet disk milling was lower than that of other pretreatments. Thus, wet disk milling is an economical, practical pretreatment for the enzymatic hydrolysis of lignocellulosic biomass, especially herbaceous biomass such as rice straw. 相似文献
12.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse. 相似文献
14.
In order to defray the cost of biodiesel production, the ensuing work was to further investigate utilization of the crude glycerol (CG) from oleochemicals industry in the atmospheric autocatalytic organosolv pretreatment (AAOP) to enhance enzymatic hydrolysis. The AAOP–CG enabled wheat straw to achieve with reasonable enzymatic hydrolysis yields, reaching 75% for the wet substrate and 63% for the dried. Lipophilic compounds from the CG formed pitch deposition on the fiber, which was responsible for low delignification (30%) and also troublesome in practical operation. Pitch deposits itself had no significant role on enzymatic hydrolysis. A striking finding of the lignin recondensation and/or lignin–carbohydrate complex helped explain why dried pretreated wheat straw had a low enzymatic hydrolysis yield. The CG was suitable for the AAOP to enhance enzymatic hydrolysis of lignocellulosic biomass. But it was advisable to remove lipophilic compounds from crude glycerol before utilization. 相似文献
15.
Irradiation pretreatment of wheat straw was carried out at different doses by using Co-60 gamma radiation. The weight loss and fragility of wheat straw after irradiation, the combination effect of irradiation and mechanical crushing on enzymatic hydrolysis of wheat straw as well as the aftereffect of irradiation were examined. It is shown that irradiation can cause significant breakdown of the structure of wheat straw. The weight loss of wheat straw increased and the size distribution after crushing moved to fine particles at elevated irradiation doses. The glucose yield of enzymatic hydrolysis of wheat straw increased with increasing doses and achieved the maximum (13.40%) at 500 kGy. A synergistic effect between irradiation and crushing was observed, with a glucose yield of 10.24% at a dose of 500 kGy with powder of 140 mesh. The aftereffect of irradiation had important impact on enzymatic hydrolysis of wheat straw. The aftereffect (at 22nd day) of 400 kGy irradiation accounted for 20.0% of the initial effect for glucose production, and the aftereffects of 50, 100, 200 (at 9th day) and 300 kGy (at 20th day) accounted for 12.9%, 14.9%, 8.9% and 9.1%, respectively, for reducing sugar production. 相似文献
17.
Rice straw was irradiated using an electron beam at currents and then hydrolyzed with cellulase and beta-glucosidase to produce glucose. The pretreatment by electron beam irradiation (EBI) was found to significantly increase the enzyme digestibility of rice straw. Specifically, when rice straw that was pretreated by EBI at 80 kGy at 0.12 mA and 1 MeV was hydrolyzed with 60 FPU of cellulase and 30 CBU of beta-glucosidase, the glucose yield after 132 h of hydrolysis was 52.1% of theoretical maximum. This value was significantly higher than the 22.6% that was obtained when untreated rice straw was used. In addition, SEM analysis of pretreated rice straw revealed that EBI caused apparent damage to the surface of the rice straw. Furthermore, EBI pretreatment was found to increase the crystalline portion of the rice straw. Finally, the crystallinity and enzyme digestibility were found to be strongly correlated between rice straw samples that were pretreated by EBI under different conditions. 相似文献
18.
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na 2SO 3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na 2SO 3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l ?1 Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na 2SO 3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %. 相似文献
19.
Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond beta-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the beta-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. 相似文献
|