首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant Chinese hamster ovary (CHO) cells expressing a high-level of chimeric antibody against S surface antigen of hepatitis B virus were obtained by co-transfection of heavy and light chain cDNA expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and subsequent gene amplification in medium containing stepwise increments in methotrexate (MTX) level such as 0.02, 0.08, 0.32, 1.0, and 4.0 microM. The highest producer (HP) subclone was isolated from each MTX level and was characterized with respect to cell growth and antibody production in the corresponding level of MTX. The specific growth rate of the HP subclone was inversely proportional to the MTX level. On the other hand, its specific antibody productivity (qAb) rapidly increased with increasing MTX level up to 0.08 microM, and thereafter, it gradually increased to 20 microg/10(6) cells/day at 4 microM MTX. Southern blot analysis showed that the enhanced qAb at higher MTX level resulted from immunoglobulin (Ig) gene amplification. The stability of the HP subclones isolated at 0.02, 0.08, 0.32, and 1.0 microM MTX in regard to antibody production was investigated during long-term culture in the absence of MTX. The qAb of all subclones significantly decreased during the culture. However, the relative extent of decrease in qAb was variable among the subclones. The HP subclone isolated at 1 microM MTX was most stable and could retain 59% of the initial qAb after 80 days of cultivation. Southern blot analysis showed that this decrease in qAb of the subclones resulted mainly from the loss of Ig gene copies during long-term culture. Despite the decreased qAb, the HP subclone isolated at 1 microM MTX could maintain high volumetric antibody productivity over three months because of improved cell growth rate during long-term culture.  相似文献   

2.
Previously, the highest producing (HP) recombinant CHO subclones isolated at various methotrexate (MTX) levels showed different antibody production stability during long-term culture, although they were clonally derived from CS13 transformant. In this study, genetic basis for their difference in antibody production stability was investigated using southern blot hybridization and fluorescence in situ hybridization (FISH) techniques. Southern analysis of HP subclones revealed that light-chain (LC) and heavy-chain (HC) cDNAs were located closely within 23 kb on an amplification unit, and the configuration of LC and HC cDNAs within this amplification unit was not disrupted during long-term culture in the absence of MTX. However, when LC and HC genes were localized on the metaphase chromosomes of HP subclones using FISH, the amplified sequences were present as an extended array on diverse marker chromosomes. HP subclones selected at higher MTX level had more kinds of marker chromosomes. CS13*-002 isolated at 0.02 microM MTX had only one marker chromosome (m002), whereas CS13*-1.0 isolated at 1 microM MTX had five different ones (m10A, m10B, m10C, m10D, and m10E). Each marker chromosome showed different fate during long-term culture of HP subclones in the absence of MTX, resulting in different degrees of stability among the HP subclones. The m10A and m10B remained unchanged, whereas the others disappeared or evolved to variants with shortened amplified arrays. The cells containing stable marker chromosomes constituted dominant subpopulations in CS13*-1.0, and thereby CS13*-1.0 became most stable in regard to antibody production during long-term culture. Furthermore, our dual-color FISH showed that the telomeric ends of amplified arrays on the stable marker chromosomes were always surrounded by (TTAGGG)(n) sequences, indicating that (TTAGGG)(n) sequences are closely related to the stability and evolution of amplified sequences. Taken together, our data show that the assessment of genotypic stability of amplified CHO cells is a prerequisite for understanding their production stability during long-term culture in the absence of selection pressure.  相似文献   

3.
To understand the different responses of recombinant Chinese hamster ovary (rCHO) cells to low culture temperature regarding specific productivity (q), 12 parental clones and their corresponding amplified clones producing a humanized antibody were cultivated at 32 and 37 degrees C. The specific growth rate of all clones, including both parental and amplified clones, decreased by 30-63% at 32 degrees C, compared to rates at 37 degrees C. In contrast, their specific antibody productivity (qAb) was significantly enhanced at 32 degrees C. Furthermore, the degree of qAb enhancement at 32 degrees C varied a lot from 4- to 25-fold among the parental clones. At 32 degrees C, most of the amplified clones, regardless of methotrexate (MTX) levels, also showed enhanced qAb but to a lesser extent than their parental clones. However, clone 14 amplified at 0.32 microM MTX (clone 14-0.32) and clone 20 amplified at 1 microM MTX (clone 20-1.00), unlike their parental clones, did not show enhanced qAb at 32 degrees C. Thus, it was found that the enhancing effect of low culture temperature on q of rCHO cells depends on clones. Taken together, the results obtained here emphasize the importance of clonal selection for the successful application of low culture temperature to the enhanced foreign protein production in rCHO cells.  相似文献   

4.
Recombinant Chinese hamster ovary (CHO) parental clones expressing a humanized antibody against S surface antigen of hepatitis B virus were obtained by cotransfection of heavy chain (HC) and light chain (LC) cDNA expression vectors into dihydrofolate reductase (DHFR)-deficient CHO cells. When 23 representative parental clones were subjected to stepwise selection for increasing methotrexate (MTX) resistance, such as 0.02, 0.08, 0.32, and 1.0 microM, their clonal variations in regard to antibody expression were found to be significant. Among 23 parental clones, only one clone (hu17) showed the significant increment of specific antibody productivity (q(Ab)) with increasing MTX concentration up to 0.32 microM. Compared with the parental clone (hu17), the q(Ab) of hu17 resistant at 0.32 microM MTX (hu17-0.32) was enhanced approximately 12.5-fold. To clarify the reason for the occurrence of clonal variations, Southern blot analyses of chromosomal DNAs derived from each amplified clone at 0.32 microM MTX were performed. Only the hu17-0.32 clone did not experience severe genetic rearrangement during gene amplification, and it had only one 49-kb amplification unit including the LC and HC cDNAs. A fluorescent MTX competition assay showed that the resistance against MTX toxicity of the other clones without enhanced q(Ab) at 0.32 microM MTX was obtained by mechanisms such as an impaired MTX transport system. Taken together, the data obtained here show that clonal variations in regard to antibody expression are found to be significant because clones can acquire MTX resistance by mechanisms other than DHFR-mediated gene amplification despite the stepwise selection.  相似文献   

5.
Recombinant Chinese hamster ovary (CHO) cells expressing a humanized antibody were obtained by transfection of an antibody expression vector (pKC-GS-HC-huS) into CHO-K1 cells and subsequent glutamine synthetase (GS)-mediated gene amplification in media containing different concentrations of methionine sulfoximine (MSX). Concentrations consisted of 25, 200, 500, and 1000 microM of MSX. The highest producer (HP) subclones were isolated from each MSX level by the limiting dilution method and were characterized with respect to antibody production. No positive relationship was observed between specific antibody productivity (q(Ab)) and MSX concentration. Furthermore, it was found that the antibody production stability of these subclones was very poor even in the presence of selection pressure. During long-term cultures in the presence of the corresponding concentrations of MSX, q(Ab) of all HP subclones significantly decreased for the first six passages and thereafter stabilized. Southern and slot blot analyses showed that the loss of antibody gene copies was only partially responsible for the decreased q(Ab). Fluorescence in situ hybridization (FISH) analysis revealed some cytogenetic features indicative of antibody production instability. Unstable chromosomal structures including dicentrics, rings, and extremely long chromosomes were observed. Amplified sequences enclosed in nuclear projections were often observed. The telomeric repeat sequence, which may be involved in the stabilization of amplified arrays, was found to be absent at the ends of most marker chromosomes. Furthermore, FISH analysis revealed that the overall chromosome content was duplicated in some HP subclones. When metaphase of 12 high producing parental clones was examined, the frequency of occurrence of the polyploidy was 25%. Taken together, the data obtained here suggests that instability could be a concern in the development of CHO cells with GS-mediated gene amplification.  相似文献   

6.
7.
Previously, we established an easy and quick construction method for obtaining a stable and highly productive gene-amplified recombinant Chinese hamster ovary (CHO) cell line. With a gradual increase in methotrexate (MTX) concentration, gene-amplified cell pools had high and stable specific growth and production rates. Moreover, the phenotype of gene-amplified cells seemed to be affected by the location of the amplified gene in chromosomal DNA. We suspected that various kinds of gene-amplified cells might appear during the long-term selection to construct gene-amplified cell pools. To clarify the behavior of gene-amplified cell pools during a stepwise increase of MTX concentration, we isolated gene-amplified clones derived from gene-amplified cell pools. We compared the characteristics of isolated clones, such as the productivity of recombinant protein, stability of amplified genes, and the location of amplified genes. As a result, telomere-type clones, in which the amplified gene was located near the telomeric region, were found to be more stable and productive than other types of clones. Telomere-type clones had over 100 copies of amplified genes in the chromosomal DNA. In contrast, a large number of other types of clones had less than 10 copies of amplified genes. During long-term cultivation in the absence of MTX, in other types of clones, amplified genes rapidly decreased in the chromosomal DNA.  相似文献   

8.
The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild‐type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:523–534, 2014  相似文献   

9.
Some of the problems encountered with human or human-mouse heterohybridomas, such as low growth rates and high serum requirements, have led to the increased use of recombinant cell lines for production of human antibodies. To evaluate the suitability of such alternative cell lines for the production of human antibodies we have analysed several subclones with differing specific production rates of a recombinant CHO cell line. Gene copy number and site of chromosomal integration for the light and heavy chain and the dhfr gene were determined by in-situ hybridisation. Specific mRNA content was analysed by Northern blot. In addition the intracellular content in light and heavy chain was measured by flow cytometry and the specific secretion rates were determined. The stability of gene expression was followed in the highest producing subclone for over a year. As previously seen in heterohybridoma cells a high expression rate of light chain is beneficial in speeding up secretion rates of whole antibody. When grown in the presence of G418 and methotrexate the amplified gene copies in the genome of recombinant CHO cells were stable over more than 100 passages. However, the expression of light chain, and with it the secretion rate, decreased with time. The low intracellular concentration of light chain resulted in accumulation of heavy chain in the endoplasmic reticulum due to retention by chaperones. The specific secretion rate decreased by 50% after 100 passages. When no G418 or methotrexate were present 75% of the gene copies were lost after 100 passages.  相似文献   

10.
The requirement for complex therapeutic proteins has resulted in mammalian cells, especially CHO cells, being the dominant host for recombinant protein manufacturing. In creating recombinant CHO cell lines, the expression vectors integrate into various parts of the genome leading to variable levels of expression and stability of protein production. This makes mammalian cell line development a long and laborious process. Therefore, with the intention to accelerate process development of recombinant protein production in CHO systems, UCOEs are utilized to diminish instability of production by maintaining an open chromatin surrounding in combination with MTX amplification. Chromosome painting and FISH analysis were performed to provide detailed molecular evaluation on the location of amplified genes and its relationship to the productivity and stability of the amplified cell lines. In summary, cell lines generated with vectors containing UCOEs retained stable GFP expression with MTX present (but instability was observed in the absence of MTX). UCOE cell lines displayed a higher frequency of integration into >1 chromosome than non‐UCOE group. Cell populations were more homogenous in terms of transgene location at the end of Long‐term culture (LTC). Overall our findings suggest variation in eGFP fluorescence may be attributed to changes in transgene integration profile over LTC.  相似文献   

11.
12.
13.
Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry. In the creation of mammalian cell lines plasmid DNA carrying the gene‐of‐interest integrates randomly into the host cell genome, which results in variable levels of gene expression between cell lines due to gene silencing mechanisms. In addition, cell lines often show unstable protein production during long‐term culture. This means that a large number of clones need to be screened in order to isolate stable, high producing cell lines making mammalian cell line development a long and laborious process. In this study an expression platform incorporating a Ubiquitous Chromatin Opening Element (UCOE; which are proposed to maintain chromatin in an open state) has been utilised for the expression of eGFP in CHO cells. Cell lines containing a UCOE vector, showed a significantly higher and more consistent eGFP expression than the non‐UCOE cell lines without DHFR amplification. To further improve recombinant protein production cell lines were amplified with methotrexate (MTX). UCOE cell lines showed improved growth in MTX therefore amplification to 250 nM MTX was achieved following a one‐step amplification procedure. However, non‐UCOE cell lines showed higher levels of eGFP production following MTX amplification. In addition, UCOE cell lines did not improve stability during long‐term culture in the absence of selective pressure. Stable eGFP production was achieved for all cell lines when MTX is present. Finally, UCOE cell lines displayed more consistent response to external stimuli than non‐UCOE cell lines, suggesting that UCOE cell lines are less prone to clonal variability. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1014–1025, 2015  相似文献   

14.
15.
Gene amplification has been associated with multidrug resistance (MDR) in several drug-resistant Chinese hamster ovary (CHO) cell lines which exhibit cross-resistance to other unrelated, cytotoxic drugs. In situ hybridization studies (Teeter et al., J. Cell Biol., in press) suggested the presence of an amplified gene associated with the MDR phenotype on the long arm of either of the largest CHO chromosomes (1 or Z1) in vincristine-resistant cells. In this study, somatic cell hybrids were constructed between these vincristine-resistant CHO cells and drug-sensitive murine cells to determine the functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Hybrids exhibited primary drug resistance and MDR in an incomplete dominant fashion. Hybrid clones and subclones segregated CHO chromosomes. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of the MDR-associated amplified sequences, overexpression of the gene located in those sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the vincristine-resistant CHO cells which is responsible for the MDR in these cells. A low level of discordance between CHO chromosomes Z8 and 2 and the drug resistance phenotype suggests that these chromosomes may contain genes involved with the MDR phenotype.  相似文献   

16.
Stable expression of human insulin-like growth factor of binding protein-1 (hIGFBP-1)at high levels has been achieved in Chinese hamster ovary (CHO) cells by co-transfection and subsequent co-amplification of expression vectors containing the hIGFBP-1 cDNA and a dihydrofolate reductase (DHFR) cDNA gene into DHFR-deficient cells. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate (MTX) generated cells which had high copy numbers of the hIGFBP-1 gene (around 100 copies in cells amplified in medium containing 100 nM MTX). Expression of hIGFBP-1 in mixed clones was found to increase with increasing copy number and an apparent correlation between intra- and extracellular levels of hIGFBP-1 produced by these cells was observed. It was further observed that continuous cultivation over eight months in medium supplemented with 100 nM MTX increased the production of hIGFBP-1 25 times. The productivity did not increase further after five more months cultivation in MTX containing medium. A subcloning of this cell line gave clones with an even higher productivity. Further amplification in 500 nM or 1 uM MTX did not increase the hIGFBP-1 production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Expression of human interleukin 2 (IL-2) at high levels has been achieved in Chinese hamster ovary (CHO) cells by amplification of transfected sequences. Plasmids containing the human IL-2 cDNA or genomic DNA and mouse dihydrofolate reductase (DHFR) cDNA were transfected into DHFR-negative CHO cells. Transformants expressing DHFR were selected in media lacking nucleosides, and cells which amplified both DHFR and IL-2 genes were obtained by exposure to increasing methotrexate (MTX) concentrations. These cell lines constitutively expressed elevated levels of IL-2 at a concentration of 2 mg/liter. These cell lines continued to produce IL-2 stably through at least 1 month, even in the absence of MTX.  相似文献   

18.
Monoclonal antibodies (mAbs) have emerged as the most promising category of recombinant proteins due to their high efficiency for the treatment of a wide range of human diseases. The complex nature of mAbs creates a great deal of challenges in both upstream and downstream manufacturing processes. Proportional expression and correct folding and assembly of the light chain and heavy chain are required for efficient production of the mAbs. In this regard, expression vector design has proven to have profound effects on the antibody expression level as well as its stability and quality. Here, we have explored the efficiency of different vector design strategies for the expression of a recombinant IgG1 antibody in Chinese hamster ovary (CHO) cells. The antibody expression level was analyzed in transient expression and stable cell pools followed by expression analysis on single-cell clones. While detectable amounts of antibody were observed in all three systems, dual-promoter single-vector system showed the highest expression level in transient and stable expression as well as the highest productivity among clonal cells. Our results here show the importance of vector design for successful production of whole mAbs in CHO cells.  相似文献   

19.
20.
Repetitive DNA sequences have been implicated in the mediation of DNA rearrangement in mammalian cells. We have tested this hypothesis by using a dihydrofolate reductase (DHFR) expression vector into which candidate sequences were inserted. DHFR- Chinese hamster ovary (CHO) cells were transfected with this vector, the amplification of which was then selected for by methotrexate (MTX) exposure. Cells transfected with the vector alone (and resistant to 0.02 or 1.0 microM MTX) or with a poly(dG-dT) insert (and resistant to 0.05 or 1.0 microM MTX) showed little change in chromosome aberrations or sister chromatid exchange frequencies. In contrast, transfection of DHFR- CHO cells with a vector containing either of two distinct 0.34-kilobase human alphoid DNA segments (and selection to 0.05 to 10.0 microM MTX) showed an approximately 50% increase in chromosome number and marked changes in chromosome structure, including one or two dicentric or ring forms per cell. The sister chromatid exchange frequency also increased, to more than double the frequency of that in cells transfected without insert or those containing poly(dG-dT). In situ hybridization of one 0.34-kilobase insert in some cells suggested clustering of homologous sequences in structurally abnormal recipient CHO cell chromosomes. The approach described provides an introduction to a unique means for a coordinate molecular and cytological study of dynamic changes in chromosome structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号