首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Japanese jewel beetle (Chrysochroa fulgidissima) is one of the beautiful beetles showing metallic green color that is kept over a millennium. This is a typical structural color resulting from a multilayer, frequently seen in insects. It was found that the elytra unexpectedly change the color from original green to blue or red by heating at 200 degrees C or by immersing in bromoform for over 1 month. This variability implies that the multilayer consists of a thermosensitive porous material. The color change induced by heating was accompanied with elytron shrinkage; the sensitivity of the reflection peak was -0.6 nm/ degrees C in 30-65 degrees C. The porous structure was determined by positron annihilation lifetime spectroscopy; the averaged pore radius was around 0.25-0.30 nm, which is close to the size of the bromoform molecule. These features prove the thermosensitivity and porous structure of the multilayer although in unusual environments.  相似文献   

2.
The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer. The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry. The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra. Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations, ranging from 1.80 GPa to 12.44 GPa, and from 0.24 GPa to 0.75 GPa, respectively. In general, both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions, which reflects the functional heterogeneity of biological material in the process of biological evolution. The elytra have very low friction coefficient, ranging from 0.037 to 0.079, which is related to their composition and morphology. Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.  相似文献   

3.
The physical mechanism of cuticular color in Phelotrupes auratus was investigated by polarized inspection, spectrophotometry and transmission electron microscopy (TEM). No color change was observed when viewed through either a right‐ or left‐handed circular polarizer. Further, under the incidence of linearly polarized light, the reflected intensity was markedly reduced when observed through a linear polarizer set with its optical axis perpendicular to that of the incident light. These results indicate that P. auratus does not possess any circularly polarizing reflectors. TEM observations revealed a total of ten or twelve thin layers (about 60–120 nm in thickness) of two types of material (electron‐dense and electron‐lucent) alternately stacked in the epicuticle. The thickness of the layers in the different color forms of the beetle corresponded to the peak wavelengths in the reflectance spectra, λmax(α), with thicker layers found in beetles exhibiting reflectance peaks at longer wavelengths and vice versa. Based on these findings, we concluded that all the cuticular color forms of P. auratus were not produced by a circularly polarizing reflector but by a simple multilayer reflector.  相似文献   

4.
The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high‐alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High‐performance liquid chromatography‐screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ~280 nm and sometimes with minor maxima at ~380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron‐dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron‐translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high‐alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress.  相似文献   

5.
The neotropical diamond weevil, Entimus imperialis, is marked by rows of brilliant spots on the overall black elytra. The spots are concave pits with intricate patterns of structural-coloured scales, consisting of large domains of three-dimensional photonic crystals that have a diamond-type structure. Reflectance spectra measured from individual scale domains perfectly match model spectra, calculated with anatomical data and finite-difference time-domain methods. The reflections of single domains are extremely directional (observed with a point source less than 5°), but the special arrangement of the scales in the concave pits significantly broadens the angular distribution of the reflections. The resulting virtually angle-independent green coloration of the weevil closely approximates the colour of a foliaceous background. While the close-distance colourful shininess of E. imperialis may facilitate intersexual recognition, the diffuse green reflectance of the elytra when seen at long-distance provides cryptic camouflage.  相似文献   

6.
The pollen beetle Meligethes aeneus Fabricius (Coleoptera, Nitidulidae), a pest of oilseed rape (Brassica napus), is known to respond to coloured stimuli; however, current understanding of the underlying mechanisms of colour choice in this species is limited. In the present study, physiological and behavioural experiments are conducted to determine the response of the pollen beetle to colours in the field. Spectral sensitivity is measured in 10 animals using the electroretinogram technique. Light flashes (100 ms) at varied wavelengths (340–650 nm, 10‐nm steps) and at different light intensities are applied to the eye after dark adaptation. In behavioural experiments in the field, 100 water traps of varying colours (from yellow to green to blue with varying amounts of white and black added, and with known spectral reflectance) are set out on a bare soil field in May 2008. The mean spectral sensitivity curve of M. aeneus peaks at 520 nm; however, a model template fitted to the long wavelength tail of the observed curve reveals a peak at approximately 540 nm (green). A secondary sensitivity peak is observed in the ultraviolet (UV) range (370 nm). A total of 2482 pollen beetles are captured in the coloured traps. The results show that the pollen beetles' preference for yellow over other colours can be modelled as a colour opponent mechanism (green versus blue); however, further experiments are needed to specify responses to colours with higher UV reflectance. These findings may be used to optimize trap colours for monitoring to help develop integrated pest management strategies for pollen beetle control.  相似文献   

7.
A new jewel beetle genus, with one species (Cretofrontolina kzyldzharica gen. et sp. nov.) from the Upper Cretaceous of Kazakhstan is described based on a body; and three new species of the formal genus Metabuprestium are described based on isolated elytra: Metabuprestium sibiricum sp. nov. and M. arkagalense sp. nov. come from the Arkagala locality (Upper Cretaceous of Russia) and M. ichbogdense sp. nov. is from the Shar Tologoi locality (Lower Cretaceous of Mongolia).  相似文献   

8.
Summary Sudden illumination of sunflower (Helianthus annuus L. cv. CGL 208) leaves and canopies led to excess absorbed PFD and induced apparent reflectance changes in the green, red and near-infrared detectable with a remote spectroradiometer. The green shift, centered near 531 nm, was caused by reflectance changes associated with the de-epoxidation of violaxanthin to zeaxanthin via antheraxanthin and with the chloroplast thylakoid pH gradient. The red (685 nm) and near-infrared (738 nm) signals were due to quenching of chlorophyll fluorescence. Remote sensing of shifts in these spectral regions provides non-destructive information on in situ photosynthetic performance and could lead to improved techniques for remote sensing of canopy photosynthesis.CIW Publication #1072  相似文献   

9.
The bark beetle Scolytogenes birosimensis Niijima is suspected to be involved in the decline of Pittosporum tobira (Thunb. ex Murray) Aiton in the coastal areas of Japan. We isolated fungi from adult S. birosimensis in nine different localities in Japan to assess their potential association and predict their contribution to the success of the beetle. Results from morphological identification of associated fungi showed that the beetle was associated with Fusarium solani and Candida spp. Furthermore, molecular analysis showed that F. solani was most closely related to the plant pathogenic fungus F. solani f. sp. mori. Fungal isolation from surface-sterilized, dissected beetles and scanning electron miscroscope (SEM) observation of the body surface suggested that the associated fungi were carried in the pits on the beetles' elytra. These findings contribute to the understanding of the relationships between S. birosimensis and its associated fungi.  相似文献   

10.
The male of the hercules beetle, Dynastes hercules, is able to change the colour of its elytra from yellowish to black and back again to yellowish within a few minutes. The epicuticle of the elytra is transparent and about 3 μm thick. Below it is a yellow spongy layer that is usually about 5 μm thick. The cuticle below the yellow sponge is black. When the layer of yellow sponge is air filled it becomes optically heterogeneous, and the light reflected from the elytra is yellow. When the yellow sponge is liquid filled it becomes optically homogeneous, and the black cuticle below is seen.If a beetle that has yellowish elytra is placed in a saturated atmosphere, the elytra become black. When the relative humidity is appreciably reduced, yellow patches begin to appear on the elytra, usually within 30 sec to 2 min. However, if the beetle is kept at a constant relative humidity that previously caused yellowing, it will become black given enough time. Most colour changes observed were clearly in response to changes in the ambient humidity and were not affected when the beetles were kept in the light or in total darkness nor by blackening their eyes or prodding them or exposing them to sounds of different intensities or frequencies.If an elytron is removed from a live beetle, it changes colour in response to changes in relative humidity exactly like the elytron left attached. When a restricted area of the elytra is subjected to a humidity that normally causes blackening and an adjacent area to a humidity that normally causes yellowing, both change colour in the expected way. This local control of colour change seems to preclude hormonal control. It is suggested that the epidermal cells or both the epidermal and blood cells in the elytra are responsible for the hydration and dehydration of the layer of yellow sponge.  相似文献   

11.
Techniques for purifying teh purple membrane of Halobacterium halobium are given. This purple membrane contains a chromoprotein with a retinal prosthetic group similar to rhodopsin, the chromprotein found in the visual systems of higher invertebrates and vertebrates. The described purple membrane isolation procedures yield a highly purified preparation as determined by transmitting electron microscopy and gel electrophoresis. Critical analysis of the absorption spectra of the purple membrane was also employed to establish criteria of purity for the preparation. The visible absorption spectra of the purified purple membrane preparation in buffer was found to have a maximum at 559 nm which shifted to 567 nm on light exposure. No indication of any spectral perturbation arising from bacterioruberin-containing membrane, the major contaminant in purple membrane preparations, was found. Furthermore, the ratio of protein aromatic amino acid absorbance at 280 nm to chromophore absorbance at 567 nm was found to be 1.5 in light-exposed preparations compared to the previously reported ratio of 2.3.-3 The decrease in the value of this ratio is also indicative of an increase in the purity of the purple membrane preparation.  相似文献   

12.
The jumping spider Cosmophasis umbratica from Singapore is strongly sexually dimorphic. The males, but not the females, reflect ultraviolet as well as green-orange light. The scales responsible for this are composed of a chitin-air-chitin sandwich in which the chitin layers are three-quarters of a wavelength thick and the air gap a quarter wavelength (where lambda=600 nm, the peak wavelength of the principal reflection maximum). It is shown that this configuration produces a second reflectance peak at approximately 385 nm, accounting for the observed reflection in the ultraviolet. Other scales have a similar thickness of chitin but lack the air gap and thus produce a dull purple reflection. This novel mechanism provides the spiders with two colour signals, both of which are important in mating displays.  相似文献   

13.
In this study, the filamentous green alga Zygogonium ericetorum (Zygnematales, Chlorophyta), collected at its natural habitat in the high alps, was investigated by light, scanning, and transmission electron microscopy. The field samples were separated into a moist fraction when wetted by splattering water of a nearby spring or a desiccated one when visually dried out. Light microscopy demonstrated a purple pigmentation of the sun-exposed upper layers, the central position of the nucleus, and the starch content in the pyrenoids. The smooth surface of the cells occasionally covered with fungal hyphae was shown by scanning electron microscopy. The cytoarchitecture of moist cells revealed many vacuoles and only a thin cytoplasmic area surrounding the two chloroplasts. The secondary cell walls of older cells were up to 4 µm thick. Organelle membranes as well as thylakoid membranes occasionally showed an inversion of contrast. In the chloroplasts, distinct areas with granular content surrounding the pyrenoids were detected. Within the cytoplasm, electron-dense particles with electron-translucent crystalloid structures were observed. When desiccated samples were investigated, the vacuoles and cytoplasmatic portions appeared destroyed, whereas nucleus and chloroplasts generally remained intact. The thylakoid membranes of desiccated samples showed lumen dilatations and numerous plastoglobules. Water-soluble extracts were separated by high-pressure liquid chromatography that revealed two major compounds with UV-absorbing capacities.  相似文献   

14.
Techniques for purifying the purple membrane of Halobacterium halobium are given. This purple membrane contains a chromoprotein with a retinal prosthetic group similar to rhodopsin, the chromoprotein found in the visual systems of higher invertebrates and vertebrates. The described purple membrane isolation procedures yield a highly purified preparation as determined by transmitting electron microscopy and gel electrophoresis. Critical analysis of the absorption spectra of the purple membrane was also employed to establish criteria of purity for the preparation. The visible absorption spectra of the purified purple membrane preparation in buffer was found to have a maximum at 559 nm which shifted to 567 nm on light exposure. No indication of any spectral perturbation arising from bacterioruberin-containing membrane, the major contaminant in purple membrane preparations, was found. Furthermore, the ratio of protein aromatic amino acid absorbance at 280 nm to chromophore absorbance at 567 nm was found to be 1.5 in light-exposed preparations compared to the previously reported ratio of 2.0.3 The decrease in the value of this ratio is also indicative of an increase in the purity of the purple membrane preparation.  相似文献   

15.

Aim

To predict future colour–climate relationships, it is important to distinguish thermal drivers of reflectance from other evolutionary drivers. We aimed to achieve this by comparing relationships between climate and coloration in ultraviolet–visible (UV–Vis) and near-infrared (NIR) light, separately.

Location

Samples were distributed primarily across Australia and North America, with some from Africa and Asia.

Major taxa studied

Coleoptera: Buprestidae.

Methods

We used jewel beetles as models to identify climatic drivers of reflectance, because jewel beetles have highly diverse coloration and a wide distribution and are often active in hot conditions. Specifically, we tested the association between climate, body size and reflectance using a phylogenetic comparative analysis for three wavebands (UV–Vis, NIR and total).

Results

Reflectance of jewel beetles was more strongly predicted by body size than by climate. NIR reflectance and total reflectance were not associated with climate, but larger beetles had higher NIR reflectance. For UV–Vis reflectance, small beetles were darker in warmer and more humid environments, whereas there was no association with climate for large beetles.

Main conclusions

Our study suggests that variation in reflectance of jewel beetles is not driven by thermal requirements and highlights the importance of considering NIR reflectance when evaluating explanations of the effects of colour on thermoregulation.  相似文献   

16.
Henk Vasmel  Jan Amesz  Arnold J. Hoff 《BBA》1986,852(2-3):159-168
The optical properties of the reaction center of the filamentous green bacterium Chloroflexus aurantiacus, that contains three bacteriochlorophyll (BChl) a and three bacteriopheophytin (BPh) a molecules, were analyzed in the near-infrared region with the aid of exciton theory. The coordinates obtained from the X-ray analysis of the reaction center of Rhodopseudomonas viridis (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) were used for the geometry of the reaction center of C. aurantiacus, with the replacement of one of the ‘accessory’ BChl molecules by BPh. The results were found to be in good agreement with experimental low-temperature absorption spectra, linear and circular dichroism and fluorescence polarization spectra and lead to the following conclusions. The allowed, low-energy exciton transition of the primary electron donor (P-865) is located at 887 nm and carries the dipole strength of approx. two BChl a monomers; the high-energy exciton transition, around 790 nm, is mixed with wave functions of other pigments, which explains its relatively small angle with respect to the 887 nm transition. The optical transition of the accessory BChl a molecule near 812 nm has some contribution of the BChls that constitute P-865. This can account for the experimentally observed reorientation and shift of this transition upon oxidation of P-865. Two of the BPh molecules are located on the same (probably the M) polypeptide subunit and show a clear splitting of absorption bands (11 nm) due to exciton coupling; the single BPh on the opposite branch shows hardly any exciton shift. Similar calculations for reaction centers of purple bacteria that contain four BChl a and two BPh a molecules resulted in a very low dipole strength for the high-energy transition of the primary donor due to antisymmetric mixing with both accessory BChl a wave functions and gave very little splitting of the absorption bands of BPh a. Our results indicate that the arrangement of the chromophores in reaction centers of C. aurantiacus is very similar to that in purple bacteria. The functional L-chains of the reaction centers of purple and filamentous green bacteria consist of pigments of the same type in a probably very similar arrangement.  相似文献   

17.
The contents of protochlorophyllide, protochlorophyll and chlorophyll together with the native arrangements of the pigments and the plastid ultrastructure were studied in different leaf layers of white cabbage (Brassica oleracea cv. capitata) using absorption, 77 K fluorescence spectroscopy and transmission electron microscopy. The developmental stage of the leaves was determined using the differentiation of the stoma complexes as seen by scanning electron microscopy and light microscopy. The pigment content showed a gradual decrease from the outer leaf layer towards the central leaves. The innermost leaves were in a primordial stage in many aspects; they were large but had typical proplastids with few simple inner membranes, and contained protochlorophyllide and its esters in a 2 : 1 ratio and no chlorophyll. Short‐wavelength, not flash‐photoactive protochlorophyllide and/or protochlorophyll forms emitting at 629 and 636 nm were dominant in the innermost leaves. These leaves also had small amounts of the 644 and 654 nm emitting, flash‐photoactive protochlorophyllide forms. Rarely prolamellar bodies were observed in this layer. The outermost leaves had the usual characteristics of fully developed green leaves. The intermediary layers contained chlorophyll a and chlorophyll b besides the protochlorophyll(ide) pigments and had various intermediary developmental stages. Spectroscopically two types of intermediary leaves could be distinguished: one with only a 680 nm emitting chlorophyll a form and a second with bands at 685, 695 and 730 nm, corresponding to chlorophyll–protein complexes of green leaves. In these leaves, a large variety of chloroplasts were found. The data of this work show that etioplasts, etio‐chloroplasts or chloro‐etioplasts as well as etiolated leaves do exist in the nature and not only under laboratory conditions. The specificity of cabbage leaves compared with those of dark‐grown seedlings is the retained primordial or intermediary developmental stage of leaves in the inner layers for very long (even for a few month) period. This opens new developmental routes leading to formation of specially developed plastids in the various cabbage leaf layers. The study of these plastids provided new information for a better understanding of the plastid differentiation and the greening process .  相似文献   

18.
Summary. Most beetles extend their elytra laterally during flight, where they can act as fixed airfoils; typically, such elytra are held at a pronounced dihedral angle. We fixed extended elytra of June beetles (Scarabaeidae: Melolonthinae) and tiger beetles (Cicindelidae) over a range of dihedral angles (-10° to 45°) and towed them in a water tunnel. We also towed them with flexed elytra (i.e. in the resting position). (Reynolds number was used to maintain dynamic similarity with air.) We measured the maximum rolling angle and the lateral oscillation rate as two indices of stability. There was no relationship between oscillation rate and dihedral angle, or between maximum roll angle and dihedral angle. At all dihedral angles tested, however, beetles were much more stable than when they were towed with the elytra flexed. We also included a third beetle type, flower beetle (Scarabaeidae: Cetoniine), which normally flies with flexed elytra. We measured stability indices for these beetles with elytra only in the flexed position. When all beetles were tested with flexed elytra, flower beetles showed no difference in maximum roll angle, but more stability in oscillation rate than the other two beetle types.  相似文献   

19.
Platypus koryoensis is a minute ambrosia beetle found in forests. It can cause significant economic damage to oak trees. Recently in Korea, it has been reported as a major pest of oak trees, because it causes sooty mold of oak by introducing the pathogenic fungus Raffaelea sp. In this paper, we demonstrate the fine structural aspects of the external body of the ambrosia beetle using field emission scanning electron microscopy, as a part of basic research into this pest so that strategies for its control might be developed. This beetle has a sensory system well developed to respond to both visual and chemical stimuli. Both sexes have a pair of faceted compound eyes and a pair of knobbed antennae, but simple eyes are absent. The mouthparts on its distinct snouts are effective devices for penetration and for boring holes. The mouthparts consist of the labrum, a pair of mandibles, a pair of maxillae and the labium. Both the maxillary and the labial palpi have the function of directing the food to the mouth and holding it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel‐like setae. The thorax has a particularly hard exoskeleton and hard elytra, including powerful muscles that operate both the wings and the legs. The legs are multi‐segmented and have a strong femur and tibia, including one pair of claws on the end of each tarsal segment. Characteristically, both male and female beetles have mycangial cavities for storing spores and other microorganisms, but only females have three pairs of large depressions on their dorsal thorax.  相似文献   

20.
J F Stolz 《Bio Systems》1990,23(4):345-357
The microbial mat community in the saltmarsh/evaporate flat interface at Laguna Figueroa involved in the deposition of laminated sediments was investigated. Pigment analysis, light microscopy and transmission electron microscopy were used to determine the relative abundance and distribution of phototrophic species. The community is vertically stratified into four distinct phototrophic populations. The layering could be distinguished by pigment and species composition. The two layers closest to the surface contained mostly oxygenic phototrophs and chlorophyll a as the primary photosynthetic pigment. Anoxic phototrophs predominated in the bottom two layers with bacteriochlorophylls a and c in the third layer and bacteriochlorophyll a and b in the bottom layer. The surface yellow layer was composed primarily of Navicula, Rhopalodia and other diatom species as well as the cyanobacteria Aphanothece sp. and Phormidium sp. Microcoleus chthonoplasces and Chroococcidiopsis sp. were the major cyanobacteria in the green colored second layer. In the third layer, pinkish-purple in color, purple photographs (Chromatium sp., Thiocapsa roseoparsicina) and filamentous green phototrophs (Chloroflexus sp., Oscillochloris sp.) were abundant. The fourth and deepest photosynthetic layer was salmon colored and composed primarily of Thiocapsa pfennigii, and other purple sulfur phototrophs. The pattern of alternating light (oxygenic community) and dark (anoxygenic community) layering preserved in older laminae is a consequence of this community structure. Study of the flat laminated mat over the 10-year period (1978-1988) including and after its destruction by catastrophic flooding events in 1978 and 1980, showed a succession of stratified communities culminating in the return of Microcoleus and the full compliment of layers by the fall of 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号