首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the "30-nm" fiber in contrast to HHO1 knock-out yeast.  相似文献   

2.
In meiosis of human males DNA is packaged along pachytene chromosomes about 20 time more compactly than in meiosis of yeast. Nevertheless, a human-derived yeast artificial chromosome (YAC) shows the same degree of compaction of DNA as endogenous chromosomes in meiotic prophase nuclei of yeast. This suggests that in yeast meiosis, human and yeast DNA adopt a similar organization of chromatin along the pachytene chromosome cores. Therefore meiotic chromatin organization does not seem to be an inherent chromosomal property but is governed by the host-specific cellular environment. We suggest that there is a correlation between the less dense DNA packaging and the increased rate of recombination that has been reported for human-derived YACs as compared with human DNA in its natural environment.  相似文献   

3.
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the “30-nm” fiber in contrast to HHO1 knock-out yeast.  相似文献   

4.
Our perception of intracellular organelles and cellular architecture was initially based on striking light and electron micrographs of animal and plant cells. The high degree of compartmental organization within specalized mammalian secretory cells aided early efforts to track the movement of proteins through the organelles of the secretory pathway. In contrast, the morphological detail of the yeast Saccharomyces cerevisiae appeared superficially simple, even primitive, by comparison with the higher eukaryotic cells. However, the combination of genetic tools and the development of assays reconstituting vesicular traffic in yeast have facilitated the identification and characterization of individual proteins that function in the secretory pathway. Analogies between the function of yeast and mammalian proteins in vesicular traffic are being drawn with increasing frequency. In this review, the combination of genetic, biochemical, molecular and cell biological approaches used to study compartmental organization in the yeast secretory pathway will be discussed. The rapid progress in our understanding of yeast membrane traffic has revealed the beauty of working with this organism.  相似文献   

5.
6.
The ATP synthase of the yeast Saccharomyces cerevisiae is composed of 20 different subunitswhose primary structure is known. The organization of proteins that constitute the membranousdomain is now under investigation. Cysteine insertions combined with the use of nonpermeantmaleimide reagents and cross-linking reagents showing different lengths and specificitycontribute to the knowledge of the location of the N- and C-termini of the subunits involved in thestator of the enzyme and their organization. This review summarizes data on yeast ATP synthaseobtained in our laboratory since 1980.  相似文献   

7.
Microbes typically live in communities. The spatial organization of cells within a community is believed to impact the survival and function of the community1. Optical sectioning techniques, including confocal and two-photon microscopy, have proven useful for observing spatial organization of bacterial and archaeal communities2,3. A combination of confocal imaging and physical sectioning of yeast colonies has revealed internal organization of cells4. However, direct optical sectioning using confocal or two-photon microscopy has been only able to reach a few cell layers deep into yeast colonies. This limitation is likely because of strong scattering of light from yeast cells4.Here, we present a method based on fixing and cryosectioning to obtain spatial distribution of fluorescent cells within Saccharomyces cerevisiae communities. We use methanol as the fixative agent to preserve the spatial distribution of cells. Fixed communities are infiltrated with OCT compound, frozen, and cryosectioned in a cryostat. Fluorescence imaging of the sections reveals the internal organization of fluorescent cells within the community.Examples of yeast communities consisting of strains expressing red and green fluorescent proteins demonstrate the potentials of the cryosectioning method to reveal the spatial distribution of fluorescent cells as well as that of gene expression within yeast colonies2,3. Even though our focus has been on Saccharomyces cerevisiae communities, the same method can potentially be applied to examine other microbial communities.  相似文献   

8.
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.  相似文献   

9.
Recent findings show that chromatin dynamics and nuclear organization are not only important for gene regulation and DNA replication, but also for the maintenance of genome stability. In yeast, nuclear pores play a role in the maintenance of genome stability by means of the evolutionarily conserved family of SUMO-targeted Ubiquitin ligases (STUbLs). The yeast Slx5/Slx8 STUbL associates with a class of DNA breaks that are shifted to nuclear pores. Functionally Slx5/Slx8 are needed for telomere maintenance by an unusual recombination-mediated pathway. The mammalian STUbL RNF4 associates with Promyelocytic leukaemia (PML) nuclear bodies and regulates PML/PML-fusion protein stability in response to arsenic-induced stress. A subclass of PML bodies support telomere maintenance by the ALT pathway in telomerase-deficient tumors. Perturbation of nuclear organization through either loss of pore subunits in yeast, or PML body perturbation in man, can lead to gene amplifications, deletions, translocations or end-to-end telomere fusion events, thus implicating SUMO and STUbLs in the subnuclear organization of select repair events.  相似文献   

10.
The centromere is an essential structure in the chromosomes of all eukariotes and is central to the mechanism that ensures proper segregation during mitosis and meiosis. The comparison of DNA sequence motifs, organization and kinetocore components from yeast to man is beginning to indicate that, although centromeres are highly variable DNA elements, a conserved pattern of sequence arrangement and function is emerging. We have identified and characterized the first satellite DNA (P.k.SAT) from microbat species Pipistrellus kuhli. The presence of mammalian CENP-B box and yeast CDEIII box could indicate the participation of P.k.SAT in centromere organization.  相似文献   

11.
Armstrong J 《Genome biology》2000,1(1):reviews104.1-reviews1044
Proteins of the Rab and SNARE families target vesicles to their intracellular destinations. A comparison of these families from the budding yeast, fission yeast, nematode and fruitfly genomes has implications for the organization of membrane traffic in different organisms.  相似文献   

12.
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a 'stratus-cumulus' type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes.  相似文献   

13.
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes.  相似文献   

14.
The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.   相似文献   

15.
Using yeast probe, a complete ribosomal DNA unit from a plant pathogenic fungus, Verticillium dahliae, was cloned into a plasmid vector pTZ19R. Partial DNA sequence of the clones, when compared to the yeast ribosomal DNA sequence, allowed to establish the physical map of the fungal rDNA. The overall organization was shown to be similar to other fungal rDNAs previously known.  相似文献   

16.
A Taddei  SM Gasser 《Genetics》2012,192(1):107-129
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.  相似文献   

17.
Isolation and characterization of a human telomere.   总被引:17,自引:6,他引:11       下载免费PDF全文
A method is described that allows cloning of human telomeres in S. cerevisiae by joining human telomeric restriction fragments to yeast artificial chromosome halves. The resulting chimeric yeast-human chromosomes propagate as true linear chromosomes, demonstrating that the human telomere structure is capable of functioning in yeast and suggesting that telomere functions are evolutionarily conserved between yeast and human. One cloned human telomere, yHT1, contains 4 kb of human genomic DNA sequence next to the tandemly repeating TTAGGG hexanucleotide. Genomic hybridizations using both cloned DNA and TTAGGG repeats have revealed a common structural organization of human telomeres. This 4 kb of genomic DNA sequence is present in most, but not all, human telomeres, suggesting that the region is not involved in crucial chromosome-specific functions. However, the extent of common features among the human telomeres and possible similarities in organization with yeast telomeres suggest that this region may play a role in general chromosome behavior such as telomere-telomere interactions. Unlike the simple telomeric TTAGGG repeats, our cloned human genomic DNA sequence does not cross-hybridize with rodent DNA. Thus, this clone allows the identifications of the terminal restriction fragments of specific human chromosomes in human-rodent hybrid cells.  相似文献   

18.
The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.  相似文献   

19.
The cytological mechanism of meiosis is very conservative in all eukaryotes. Some meiosis-specific structural proteins of yeast, nematode Caenorhabditis elegans, Drosophila, and mammals, which play identical roles in cells during meiosis, do not have homology of the primary structure, but their domain organization and conformation are similar. The enzymes of meiotic recombination in yeast and plants have similar epitopes. These facts suggest that the similarity of the higher level of organization of the meiosis-specific proteins allows these proteins to form similar subcellular structures and produce similar cytological picture of meiosis and similar functions of these subcellular structures. Finally, this leads to a conservative scheme of meiosis in evolutionally distant eukaryotes.  相似文献   

20.
Purified, isolated yeast tRNA Ser2 was used as a hybridization probe to estimate the number of tRNA Ser2 genes in the yeast genome. Molecular clones of several of the genes were obtained. Three examples were studied in detail with respect to their genomic organization, and DNA sequences were determined for them. There appear to be eleven tRNA Ser2 genes in the yeast genome. They are neither tandemly repeated, nor clustered with other tRNA genes. They contain no intervening sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号