首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-adrenergic receptor ligand (S)-4-(3-(2'-[18F]-fluoroethylamino)-2-hydroxypropoxy)-carbazol ((S)-[18F]-fluoroethylcarazolol) was prepared by reaction of [18F]-fluoroethylamine with the corresponding (S)-epoxide and was evaluated in rats by studying its pharmacokinetics and its binding profile both in vitro and in vivo. In vitro, (S)-fluoroethylcarazolol binds preferentially to beta-adrenoceptors (pK(i)=9.3 for beta(1) and 9.4 for beta(2)) and has less affinity to 5HT(1A) and 5HT(1D) receptors (pK(i)=6.7 and 5.2). In vivo, standard uptake values (SUVs) up to 0.63+/-0.07 in cortical regions were found after 60 min. Metabolites (90%) appeared within 10 min in plasma, whereas, in brain 70-75% parent compound was found after 60 min. Clearance from plasma occurred within 5 min. Cerebral uptake could be blocked by 'cold' fluoroethylcarazolol in every region, except medulla. Uptake was also blocked by propranolol and pindolol, but not by WAY 100635. ICI 89406 hardly lowered [18F] levels in brain. ICI 118551 reduced uptake of [18F] in cerebellum (mainly beta(2)) by 30%. Specific binding (tissue minus medulla values) in various brain regions corresponded with those observed for [18F]-fluorocarazolol (r(2)=0.95) and with in vitro beta-adrenoceptor densities (r(2)=0.76). Autoradiography using phosphor images of (S)-[18F]-fluoroethylcarazolol in rat brain showed the characteristic binding pattern of beta-antagonists, while propranolol treatment resulted in low and homogenous uptake. Regional tissue minus medulla values corresponded with in vitro beta-adrenoceptor densities (r(2)=0.77). We conclude that (S)-[18F]-fluoroethylcarazolol is a high affinity ligand that binds specifically to cerebral beta-adrenoceptors in vivo and may be of use for beta-adrenoceptor imaging in the brain with PET.  相似文献   

2.
Mecamylamine is a well-described non specific antagonist of nicotinic acetylcholine receptors (nAChRs), used in therapy and in psychopharmacological studies. [(11)C]-Mecamylamine was prepared and evaluated as a putative radioligand for positron emission tomography to study nicotinic acetylcholine receptors. The radiosynthesis consisted in the [(11)C]-methylation of the desmethyl precursor within 40 min with 30-40% radiochemical yield decay corrected. Biodistribution studies in rats showed that radioligand crossed the blood-brain barrier (0.39% ID at 30 min) and only unmetabolized tracer was recovered from brain at 45 min. Ex vivo autoradiography studies in rats did not indicate preferential uptake, and pre-treatment mecamylamine or with chlorisondamine, an nicotinic receptor inhibitor, did not demonstrate a significant specific binding. To investigate possible specie differences and effects of anesthesia, in vivo positron emission tomography (PET) studies were carried out on anaesthetized baboons and conscious macaques. The regional brain distribution of [(11)C]-mecamylamine in the two species of primates exhibited similar kinetics as did the rat with steady state reached about 45-50 min after radiotracer administration. Uptake values were two-fold higher in brain of conscious macaque than in anaesthetized baboon (thalamus: 0.258% ID/(kg mL) in conscious macaques and 0.129% ID/(kg mL) in baboons). PET images showed a radioactivity distribution which was quite homogeneous throughout the brain but with somewhat higher uptake in grey matter than in white. Brain distribution was unaltered by saturation or displacement studies. Possible explanation for the failure to establish specific binding in vivo could be long-lived structural modifications of the ionotropic channel by the unlabeled ligand administered before the tracer. In conclusion, [(11)C]-mecamylamine did not satisfy the requirements for a PET tracer of nicotinic acetylcholine receptors.  相似文献   

3.
Radiosynthesis of [N-methyl-(11)C](S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide ([(11)C]BBAC or [(11)C]3) and [N-methyl-(11)C] (S)-N-([1,1'-biphenyl]-2-yl)-1-(3-(1-methyl-1H-benzo[d]imidazol-2-yl)propanoyl)pyrrolidine-2-carboxamide ([(11)C]BBPC or [(11)C]-4), two potential PET tracers for orexin2 receptors are described. Syntheses of non-radioactive standards 3, 4 and corresponding desmethyl precursors 1, 2 were achieved from common intermediate (S)-2-([1,1'-biphenyl]-2-yl)-1-(pyrrolidin-2-yl)ethanone. Methylation using [(11)C]CH(3)OTf in the presence of base in acetone afforded [(11)C]3 and [(11)C]4 in 30±5% yield (EOS) with >99 % radiochemical purities with a specific activity ranged from 2.5±0.5 Ci/μmol (EOB). The logP of [(11)C]3 and [(11)C]4 were determined as 3.4 and 2.8, respectively. The total synthesis time was 30 min from EOB. However, PET scans performed in a rhesus monkey did not show tracer retention or appropriate brain uptake. Hence [(11)C]3 and [(11)C]4 cannot be used as PET tracers for imaging orexin2 receptors.  相似文献   

4.
Recently, tissue segment binding method with a hydrophilic radioligand [(3)H]-CGP12177 was developed to detect plasma membrane beta-adrenoceptors in rat heart (Horinouchi et al., 2006). In the present study, propranolol (40 mg kg(-1) day(-1)), atenolol (40 mg kg(-1) day(-1)) and bevantolol (200 mg kg(-1) day(-1)) were administered to rats for 6 weeks, and the changes of plasma membrane beta-adrenoceptors and their mRNA expression in rat ventricle were examined. Chronic administration of propranolol increased the beta(1)-adrenoceptors but decreased the beta(2)-adrenoceptors without changing total amount of plasma membrane beta-adrenoceptors. Atenolol increased both plasma membrane beta(1)- and beta(2)-adrenoceptors, whereas bevantolol had no effect on the beta-adrenoceptor density and their subtype proportions. In contrast, the density of beta-adrenoceptors detected in conventional homogenate binding study was extremely low (approximately 60% of plasma membrane beta-adrenoceptors detected with the tissue segment binding method) and the effects of chronic administration of beta-adrenoceptor antagonists were not necessarily in accord with those at the plasma membrane beta-adrenoceptors. The mRNA levels of beta(1)- and beta(2)-adrenoceptors were not altered by propranolol treatment, while beta(1)-adrenoceptor mRNA significantly decreased after administration of atenolol or bevantolol without changing the level of beta(2)-adrenoceptor mRNA. The present binding study with intact tissue segments clearly shows that the plasma membrane beta(1)- and beta(2)-adrenoceptors of rat heart, in contrast to the homogenate binding sites and the mRNA levels, are differently affected by chronic treatment with three beta-adrenoceptor antagonists; up- and down-regulations of beta(1)- and beta(2)-adrenoceptors, respectively, by propranolol, and up-regulation of both the subtypes by atenolol, but no significant change in both the subtypes by bevantolol.  相似文献   

5.
(+/-)-1-[4-(2-Isopropoxyethoxymethyl)-phenoxy]-3-isopropylamino-2-propanol (bisoprolol) is a potent, clinically used beta(1)-adrenergic agent. (R)-(+) and (S)-(-) enantiomers of bisoprolol were labelled with carbon-11 (t(1/2)=20.4 min) as putative tracers for the non-invasive assessment of the beta(1)-adrenoceptor subtype in the human heart and brain with positron emission tomography (PET). The radiosynthesis consisted of reductive alkylation of des-iso-propyl precursor with [2-11C]acetone in the presence of sodium cyanoborohydride and acetic acid. The stereo-conservative synthesis of (R)-(+) and (S)-(-)-1-[4-(2-isopropoxyethoxymethyl)-phenoxy]-3-amino-2-propanol to be used as the precursors for the radiosynthesis of [11C]bisoprolol enantiomers was readily accomplished by the use of the corresponding chiral epoxide in three steps starting from the commercially available hydroxybenzyl alcohol. The final labelled product (either (+) or (-)-1-[4-(-isopropoxyethoxymethyl)-phenoxy]-3- [11C]isopropylamino-2-propanol) was obtained in 99% radiochemical purity in 30 min with 15+/-5% (EOS, non-decay corrected) radiochemical yield and 3.5+/-1 Ci/micromol specific radioactivity. Preliminary biological evaluation of the tracer in rats showed that about 30% of heart uptake of [11C](S)-bisoprolol is due to specific binding. The high non-specific uptake in lung might mask the heart uptake, thus precluding the use of [11C](S)-bisoprolol for heart and lung studies by PET. The remarkably high uptake of the tracer in rat brain areas rich of beta-adrenergic receptors such as pituitary (1.8+/-0.3% I.D. at 30 min) was blocked by pre-treatment with the beta-adrenergic antagonists propranolol (45%) and bisoprolol (51%, p<0.05). [11C](S)-bisoprolol deserves further evaluation in other animal models as a putative beta(1) selective radioligand for in vivo investigation of central adrenoceptors.  相似文献   

6.
(R)-1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-propan-2-ol ((R)-OHDMI) and (S,S)-1-cyclopentyl-2-(5-fluoro-2-methoxy-phenyl)-1-morpholin-2-yl-ethanol (CFMME) were synthesized and found to be potent inhibitors of norepinephrine reuptake. Each was labelled efficiently in its methyl group with carbon-11 (t(1/2)=20.4 min) as a prospective radioligand for imaging brain norepinephrine transporters (NET) with positron emission tomography (PET). The uptake and distribution of radioactivity in brain following intravenous injection of each radioligand into cynomolgus monkey was examined in vivo with PET. After injection of (R)-[(11)C]OHDMI, the maximal whole brain uptake of radioactivity was very low (1.1% of injected dose; I.D.). For occipital cortex, thalamus, lower brainstem, mesencephalon and cerebellum, radioactivity ratios to striatum at 93 min after radioligand injection were 1.35, 1.35, 1.2, 1.2 and 1.0, respectively. After injection of [(11)C]CFMME, radioactivity readily entered brain (3.5% I.D.). Ratios of radioactivity to cerebellum at 93 min for thalamus, occipital cortex, region of locus coeruleus, mesencephalon and striatum were 1.35, 1.3, 1.3, 1.2 and 1.2, respectively. Radioactive metabolites in plasma were measured by radio-HPLC. (R)-[(11)C]OHDMI represented 75% of plasma radioactivity at 4 min after injection and 6% at 30 min. After injection of [(11)C]CFMME, 84% of the radioactivity in plasma represented parent at 4 min and 20% at 30 min. Since the two new hydroxylated radioligands provide only modest regional differentiation in brain uptake and form potentially troublesome lipophilic radioactive metabolites, they are concluded to be inferior to existing radioligands, such as (S,S)-[(11)C]MeNER, (S,S)-[(18)F]FMeNER-D(2) and (S,S)-[(18)F]FRB-D(4), for the study of brain NETs with PET in vivo.  相似文献   

7.
[(11)C]Hemicholinium-15 ([(11)C]HC-15) and [(18)F]hemicholinium-15 ([(18)F]HC-15) have been synthesized as new potential PET tracers for the heart high-affinity choline uptake (HACU) system. [(11)C]HC-15 was prepared by N-[(11)C]methylation of the appropriate precursor, 4-methyl-2-phenyl-morpholin-2-ol, using [(11)C]CH(3)OTf in 55-70% radiochemical yield decay corrected to end of bombardment (EOB) and 2-3Ci/mumol specific activity at end of synthesis (EOS). [(18)F]HC-15 was prepared by N-[(18)F]fluoromethylation of the precursor using [(18)F]FCH(2)OTf in 20-30% radiochemical yield decay corrected to EOB and >1.0Ci/mumol specific activity at EOS. The biodistribution of both compounds was determined in rats at 20min post-intravenous injection, and the results show the heart region uptakes 1.32+/-0.75%ID/g in R-ventricle for [(11)C]HC-15 and 1.28+/-0.81%ID/g in L-ventricle for [(18)F]HC-15, respectively. The dynamic PET imaging studies of [(11)C]HC-15 in rats were acquired 60min post-intravenous injection of the tracer using the IndyPET-II scanner. For the blocking experiments, the rats were intravenously pretreated with 3.0mg/kg of unlabeled HC-15 prior to [(11)C]HC-15 injection. [(11)C]HC-15 rat heart PET studies show rapid heart uptake to give clear heart images. The rat heart PET blocking studies found no significant blocking effect. The dynamic PET studies in normal and ablated dogs were performed using Siemens PET scanner with [(13)N]NH(3), [(11)C]HC-15, and [(18)F]HC-15. PET studies in dogs of both [(11)C]HC-15 and [(18)F]HC-15 also show significant heart uptake and give images of the heart. However, there is no significant change in [(11)C]HC-15 L-ventricle uptake following radiofrequency ablation in the dog. These results suggest that the localization of HC-15 tracers in the heart is mediated by non-specific processes, and the visualization of HC-15 tracers on the heart is related to non-specific binding of HACU.  相似文献   

8.
2-((4-(1-[(11)C]Methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl)phenoxy)methyl)-quinoline (MP-10), a specific PDE10A inhibitor (IC(50)=0.18 nM with 100-fold selectivity over other PDEs), was radiosynthesized by alkylation of the desmethyl precursor with [(11)C]CH(3)I, ~45% yield, >92% radiochemical purity, >370 GBq/μmol specific activity at end of bombardment (EOB). Evaluation in Sprague-Dawley rats revealed that [(11)C]MP-10 had highest brain accumulation in the PDE10A enriched-striatum, the 30 min striatum: cerebellum ratio reached 6.55. MicroPET studies of [(11)C]MP-10 in monkeys displayed selective uptake in striatum. However, a radiolabeled metabolite capable of penetrating the blood-brain-barrier may limit the clinical utility of [(11)C]MP-10 as a PDE10A PET tracer.  相似文献   

9.
A new AChE tracer N-[(11)C]methyl-3-[[(dimethylamino)carbonyl]oxy]-2-(2',2'-diphenylpropionoxymethyl)pyridinium ([(11)C]MDDP, [(11)C]1) has been synthesized in 40-65% radiochemical yield. Initial PET dynamic studies of [(11)C]MDDP in rat heart showed rapid heart uptake and blood pool clearance to give high-quality heart images. Blocking studies of [(11)C]MDDP with pretreatment drug neostigmine in rats found only minor reductions in rat heart [(11)C]MDDP retention. The results suggest that [(11)C]MDDP delineates the heart very clearly, and the uptakes of [(11)C]MDDP in rat heart might be related to non-specific binding.  相似文献   

10.
N-(4-fluorobut-2-yn-1-yl)-2β-carbomethoxy-3β-(4'-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [(11)C]PR04.MZ ([(11)C]-1) has been developed using GMP compliant equipment. An adult female Papio anubis baboon was studied using a test-retest protocol with [(11)C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (f(P)), plasma input functions and metabolic degradation of the radiotracer [(11)C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (V(T)) and non-displaceable binding potentials (BP(ND)) for various brain regions and the blood were obtained from kinetic modelling. [(11)C]-1 shows promising results as a selective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.  相似文献   

11.
Group II metabotropic glutamate receptors (mGluRs) have been implicated in a variety of neurological and psychiatric disorders in recent studies. As a noninvasive medical imaging technique and a powerful tool in neurological research, positron emission tomography (PET) offers the possibility to visualize and study group II mGluRs in vivo under physiologic and pathologic conditions. We synthesized a PET tracer, (S,S,S)-2-(2-carboxycyclopropyl)-2-(3-[(11)C]methoxyphenethyl) glycine dimethyl ester ([(11)C]CMGDE), as a prodrug for group II mGluRs, and studied its preliminary biological properties in Sprague-Dawley rats to visualize group II mGluRs. The microPET studies demonstrated that [(11)C]CMGDE readily penetrated into the brain and the radiotracer generated from [(11)C]CMGDE had fast reversible binding in the group II mGluRs rich regions including striatum, hippocampus and different cortical areas. Blocking studies with LY341495 showed 20-30% decrease of binding of the radiotracer generated from [(11)C]CMGDE in all brain areas with the highest decrease in the striatum 31.5±3.2%. The results show [(11)C]CMGDE is the first PET tracer that is brain penetrating and can be used to image group II mGluRs in vivo.  相似文献   

12.
The radiosynthesis and radiopharmacological evaluation of 1-[(11)C]methoxy-4-(2-(4-(methanesulfonyl)phenyl)cyclopent-1-enyl)-benzene [(11)C]5 as novel PET radiotracer for imaging of COX-2 expression is described. The radiotracer was prepared via O-methylation reaction with [(11)C]methyl iodide in 19% decay-corrected radiochemical yield at a specific activity of 20-25GBq/mumol at the end-of-synthesis within 35 min. The radiotracer [(11)C]5 was evaluated in vitro using various pro-inflammatory and tumor cell lines showing high functional expression of COX-2 at baseline or after induction. In vivo biodistribution of compound [(11)C]5 was characterized in male Wistar rats. Compound [(11)C]5 was rapidly metabolized in rat plasma, and more pronounced, in mouse plasma. In vivo kinetics and tumor uptake were demonstrated by dynamic small animal PET studies in a mouse tumor xenograft model. Tumor uptake of radioactivity was clearly visible overtime. However, radioactivity uptake in the tumor could not be blocked by the pre-injection of nonradioactive compound 5. Therefore, it can be concluded that radioactivity uptake in the tumor was not COX-2 mediated.  相似文献   

13.
N1-(2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(11)C]R116301) was prepared and evaluated as a potential positron emission tomography (PET) ligand for investigation of central neurokinin(1) (NK(1)) receptors. 1-Bromo-3,5-di(trifluoromethyl)benzene was converted in three steps into 3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl chloride, which was reacted with N1-(2,6-dimethylphenyl)-2-{4-[(2R,4S)-2-benzylhexahydro-4-pyridinyl]piperazino}acetamide providing [(11)C]R116301 in 45-57% decay-corrected radiochemical yield. The total synthesis time, from end of bombardment (EOB) to the formulated product, was 35 min. Specific activity (SA) was 82-172 GBq/micromol (n=10) at the end of synthesis. N1-([4-(3)H]-2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(3)H]R116301) was also synthesized (SA: 467 GBq/mmol). The B(max) for [(3)H]R116301 measured in vitro on Chinese hamster ovary cell membranes stably transfected with the human NK(1) receptor was 19.10+/-1.02 pmol/mg protein with an apparent dissociation constant of 0.08+/-0.01 nM. Ex vivo, in vivo and in vitro autoradiography studies with [(3)H]R116301 in gerbils demonstrated a preferential accumulation of the radioactivity in the striatum, olfactory tubercule, olfactory bulb and locus coeruleus. In vivo, the biodistribution of [(11)C]R116301 in gerbils revealed that the highest initial uptake is in the lung, followed by the liver and kidney. In the brain, maximum accumulation was found in the olfactory tubercules (1.10+/-0.08 injected dose (ID)/g 20 min post injection (p.i.)) and the nucleus accumbens (1.00+/-0.12ID/g 10 min p.i.). Tissue/cerebellum concentration ratios for striatum and nucleus accumbens increased with time due to rapid uptake followed by a slow wash out (1.29 and 1.64, respectively, 30 min p.i.). A tissue to cerebellum ratio of 1.33 and 1.62 was also observed for olfactory bulb and olfactory tubercules, respectively (20 min p.i.). In summary, [(11)C]R116301 appears to be a promising radioligand suitable for the visualization of NK(1) receptors in vivo using PET.  相似文献   

14.
The radiosynthesis and in vivo evaluation of 5-(5-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-yl)-1H-indole [(11)C]rac-(1), a potential PET tracer for α7 nicotinic acetylcholine receptors (α7-nAChR), are described. Syntheses of the nonradioactive standard rac-1 and corresponding desmethyl precursor 7 were achieved in several reaction steps. Radiomethylation of 7 with [(11)C]CH(3)I afforded [(11)C]rac-1 in an average radiochemical yield of 30 ± 5% (n=5) with high radiochemical purity and an average specific radioactivity of 444 ± 74 GBq/μmol (n=5). The total synthesis time was 30 min from end-of-bombardment. Biodistribution studies in mice showed that [(11)C]rac-1 penetrates the blood-brain barrier and specifically labels neuronal α7-nAChRs.  相似文献   

15.
Five potent, lipophilic beta-adrenoceptor antagonists (carvedilol, pindolol, toliprolol and fluorinated analogs of bupranolol and penbutolol) were labeled with either carbon-11 or fluorine-18 and evaluated for cerebral beta-adrenoceptor imaging in experimental animals. The standard radioligand for autoradiography of beta-adrenoceptors, [125I]-iodocyanopindolol, was also included in this survey. All compounds showed either very low uptake in rat brain or a regional distribution that was not related to beta-adrenoceptors, whereas some ligands did display specific binding in heart and lungs. Apparently, the criteria of a high affinity and a moderately high lipophilicity were insufficient to predict the suitability of beta-adrenergic antagonists for visualization of beta-adrenoceptors in the central nervous system.  相似文献   

16.
beta-Adrenoceptor blocking drugs interfere with adenosine diphosphate-stimulated platelet aggregation. Alprenolol, exaprolol, K? 1124 and propranolol inhibited the aggregation, metipranolol decreased the extent and rate of aggregation significantly. Atenolol potentiated the aggregation measured by amplitude significantly. The interaction of beta-adrenoceptor blocking drugs with aggregation correlated with the displacement of calcium ions from binding sites in isolated platelets and the fluidization of the whole platelets and isolated platelet membrane as measured with electron spin resonance of the spin probe. The most potent were highly liposoluble drugs alprenolol, exaprolol, metipranolol and propranolol which increased the calcium displacement and membrane fluidity, the least active was atenolol decreasing these phenomena. The inhibition by beta-adrenoceptor blocking drugs of stimulated platelet aggregation is rather a result of unspecific than specific receptor interaction.  相似文献   

17.
R107474, 2-methyl-3-[2-(1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one, was investigated using in vitro and in vivo receptor assays and proved to be a potent and relatively selective alpha(2)-adrenoceptor antagonist. Performed assays in vitro were inhibition of binding to a large number of neurotransmitter receptor sites, drug receptor binding sites, ion channel binding sites, peptide receptor binding sites, and the monoamine transporters in membrane preparations of brain tissue or of cells expressing the cloned human receptors. The compound has subnanomolar affinity for halpha(2A)- and halpha(2C)-adrenoceptors (K(i) = 0.13 and 0.15 nM, respectively) and showed nanomolar affinity for the halpha(2B)-adrenoceptors and 5-hydroxytryptamine(7) (h5-HT(7)) receptors (K(i) = 1 and 5 nM, respectively). R107474 interacted weakly (K(i) values ranging between 81 and 920 nM) with dopamine-hD(2L), -hD(3) and -hD(4), h5-HT(1D)-, h5-HT(1F)-, h5-HT(2A)-, h5-HT(2C)-, and h5-HT(5A) receptors. The compound, tested up to 10 microM, interacted only at micromolar concentrations or not at all with any of the other receptor or transporter binding sites tested in this study. In vivo alpha(2A)- and alpha(2C)-adrenoceptor occupancy was measured by ex vivo autoradiography 1h after subcutaneous (sc) administration of R107474. It was found that R107474 occupies the alpha(2A)- and alpha(2C)-adrenoceptors with an ED(50) (95% confidence limits) of 0.014 mg/kg sc (0.009-0.019) and 0.026 mg/kg sc (0.022-0.030), respectively. Radiolabeled 2-methyl-3-[2-([1-(11)C]-1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one ([(11)C]R107474) was prepared and evaluated as a potential positron emission tomography (PET) ligand for studying central alpha(2)-adrenoceptors. [(11)C]R107474 was obtained via a Pictet-Spengler reaction with [(11)C]formaldehyde in 33 +/- 4% overall decay-corrected radiochemical yield. The total synthesis time was 55 min and the specific activity was 24-28 GBq/micromol. The biodistribution of [(11)C]R107474 in rats revealed that the uptake of [(11)C]R107474 after in vivo intravenous administration is very rapid; in most tissues (including the brain) it reaches maximum concentration at 5 min after tracer injection. In agreement with the known distribution of alpha(2)-adrenoceptors in the brain, highest uptake of radioactivity was observed in septum (3.54 +/- 0.52 ID/g, 5 min pi) and entorhinal cortex (1.57 +/- 0.10 ID/g, 5 min pi). Tissue/cerebellum concentration ratios for septum (5.38 +/- 0.45, 30 min pi) and entorhinal cortex (3.43+/-0.24, 30 min pi) increased with time due to rapid uptake followed by a slow washout. In vivo blocking experiments using the non-selective alpha(2)-adrenoceptor antagonist mirtazapine demonstrated specific inhibition of [(11)C]R107474 binding in selective brain areas. The receptor binding profile of mirtazapine is reported and the selectivity of inhibition of binding is discussed. These results suggest that [(11)C]R107474 deserves further investigation as a potential radioligand for studying alpha(2)-adrenoceptors using PET.  相似文献   

18.
The serotonin receptor 6 (5-HT(6)) is implicated in the pathophysiology of cognitive diseases, schizophrenia, anxiety and obesity and in vivo studies of this receptor would be of value for studying the pathophysiology of these disorders. Therefore, N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide (SB399885), a selective and high affinity (pK(i)=9.11) 5-HT(6) antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue with [(11)C]MeOTf in order to determine the suitability of [(11)C]SB399885 to quantify 5-HT(6)R in living brain using PET. Desmethyl-SB399885 was prepared, starting from 1-(2-methoxyphenyl) piperazine hydrochloride, in excellent yield. The yield obtained for radiolabeling of [(11)C]SB399885 was 30±5% (EOS) and the total synthesis time was 30min at EOB. PET studies with [(11)C]SB399885 in baboon showed fast uptake followed by rapid clearance in the brain. Highest uptake of radioactivity of [(11)C]SB399885 in baboon brain were found in temporal cortex, parahippocampal gyrus, pareital cortex, amygdala, and hippocampus. Poor brain entry and inconsistent brain uptake of [(11)C]SB399885 compared to known 5-HT(6)R distribution limits its usefulness for the in vivo quantification of 5-HT(6)R with PET.  相似文献   

19.
We have shown that the stimulation of beta-adrenoceptors is an important step in venom production in the Bothrops jararaca venom gland. In the present study, the pharmacological profile of the beta-adrenoceptor present in Bothrops jararaca venom gland was characterized by radioligand binding assay and by the ability of isoprenaline to promote accumulation of cyclic AMP in dispersed secretory cells. In both cases, the venom glands were obtained from non-extracted snakes (quiescent stage) or from snakes which venom was extracted 4 days before sacrifice (venom production stimulated stage). [125I]-iodocyanopindolol ([125I]-ICYP) bound to extracted gland membranes in a concentration-dependent and saturable manner, but with low affinity. Propranolol, beta1- or beta2-selective adrenoceptors ligands displaced the [125I]-ICYP binding with low affinity, while selective beta3-adrenoceptor ligands did not displace the [125I]-ICYP binding. The displacement of [125I]-ICYP by propranolol was similar in non-extracted and extracted glands, showing the presence of beta-adrenoceptors in both stages. In dispersed secretory cells of non-extracted glands, isoprenaline (1 microM) increased the cyclic AMP production and propranolol (10 microM) was able to block this effect. On the other hand, in extracted glands, isoprenaline had no effect. The results suggest that the beta-adrenoceptors present in the Bothrops jararaca venom glands are different from those (beta1, beta2 or beta3) described in mammals, but are coupled to the Gs protein, like the known beta-adrenoceptor subtypes. Moreover, previous in vivo stimulation of venom production desensitizes the beta-adrenoceptors system and, although the receptors could be detected by binding studies, they are not coupled to the Gs protein, indicating that beta-adrenoceptors stimulation contributes to the initial steps of venom synthesis.  相似文献   

20.
Brain efflux systems export such conjugated metabolites as glutathione (GSH) and glucuronate conjugates, generated by the detoxification process, from the brain and serve to protect the brain from harmful metabolites. The intracerebral injection of a radiolabeled conjugate is a useful technique to assess brain efflux systems; however, this technique is not applicable to humans. Hence, we devised a novel noninvasive approach for assessing GSH-conjugate efflux systems using positron emission tomography. Here, we investigated whether or not a designed proprobe can deliver its GSH conjugate into the brain. Radiolabeled 6-chloro-7-methylpurine (7m6CP) was designed as the proprobe, and [(14)C]7m6CP was prepared by the reaction of 6-chloropurine with [(14)C]CH(3)I as a model of [(11)C]CH(3)I. The radiochemical yield and purity of [(14)C]7m6CP were 10-20% and greater than 99%, respectively. High brain uptake (0.8% ID/g) at 1 min was observed, followed by gradual radioactivity clearance from the brain for 5-60 min after the injection of [(14)C]7m6CP into rats. Analysis of metabolites confirmed that the presence of [(14)C]7m6CP was hardly observed, and 80% of the radioactivity was identical to its GSH conjugate for 15-60 min. The brain radioactivity was single-exponentially decreased during the period of 15-60 min post-injection of [(14)C]7m6CP, and the first-order efflux rate constant of the conjugate, estimated from the slope, was 0.0253 min(-1). These results showed that (1) [(14)C]7m6CP readily entered the brain, (2) it efficiently and specifically transformed to the GSH conjugate within the brain, and (3) after [(14)C]7m6CP disappearance, the clearance of radioactivity represented the only efflux of GSH conjugate. We conclude that 7m6CP can deliver the GSH conjugate into the brain and would be useful for assessing GSH-conjugate efflux systems noninvasively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号