首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to develop effective strategies for cooling and cryopreservation of immature porcine testis tissue that maintain its developmental potential. Testes from 1-wk-old piglets (Sus domestica) were subjected to 1 of 12 cooling/cryopreservation protocols: as intact testes, cooling at 4 °C for 24, 48, or 72 h (Experiment 1); as fragments, programmed slow-freezing with dimethyl sulfoxide (DMSO), glycerol, or ethylene glycol (Experiment 2); or solid-surface vitrification using DMSO, glycerol, or ethylene glycol, each using 5-, 15-, or 30-min cryoprotectant exposure times (Experiment 3). For testis tissue xenografting, four immunodeficient recipient mice were assigned to each protocol, and each mouse received eight grafts. Recipient mice were killed 16 wk after grafting to assess the status of graft development. Based on morphology and in vitro assessment of cell viability, cooling of testis tissue for up to 72 h maintained structural integrity, cell viability, in vivo growth, and developmental potential up to complete spermatogenesis comparable with that of fresh tissue (control). In frozen-thawed testis tissues, higher numbers of viable cells were present after programmed slow-freezing using glycerol compared with that after DMSO or ethylene glycol (P < 0.001). Among the vitrified groups, exposure to DMSO for 5 min yielded numerically higher viable cell numbers than that of other groups. Cryopreserved tissue fragments recovered after xenografting had normal spermatogenesis; germ cells advanced to round and elongated spermatids after programmed slow-freezing using glycerol, as well as after vitrification using glycerol with 5- or 15-min exposures, or using DMSO for a 5-min exposure.  相似文献   

2.
Although it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant. It appears that damage is associated with the formation of ice per se, even at cooling rates that are optimal for the cryopreservation of isolated chondrocytes. We then showed that current methods of cartilage cryopreservation involve the nucleation and growth of ice crystals within the chondrons rather than ice being restricted to the surrounding acellular matrix. This finding established the need to avoid the crystallization of ice—in other words, vitrification. Song and his colleagues have published a vitrification method that is based on the use of one of Fahy’s vitrification formulations. We confirmed the effectiveness of this method but found it to be very dependent on ultra rapid warming. However, we were able to develop a ‘liquidus-tracking’ method that completely avoids the crystallization of ice and does not require rapid warming. The ability of cartilage preserved in this way to incorporate sulphate into newly synthesized glycosaminoglycans (GAGs) approached 70% of that of fresh control cartilage. In this method the rates of cooling and warming can be very low, which is essential for any method that is to be used in Tissue Banks to process the bulky grafts that are required by orthopaedic surgeons. Work is continuing to refine this method for Tissue Bank use.  相似文献   

3.
Pegg DE  Wang L  Vaughan D 《Cryobiology》2006,52(3):360-368
Although it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant. It appears that damage is associated with the formation of ice per se, even at cooling rates that are optimal for the cryopreservation of isolated chondrocytes. We then showed that current methods of cartilage cryopreservation involve the nucleation and growth of ice crystals within the chondrons rather than ice being restricted to the surrounding acellular matrix. This finding established the need to avoid the crystallization of ice—in other words, vitrification. Song and his colleagues have published a vitrification method that is based on the use of one of Fahy’s vitrification formulations. We confirmed the effectiveness of this method but found it to be very dependent on ultra rapid warming. However, we were able to develop a ‘liquidus-tracking’ method that completely avoids the crystallization of ice and does not require rapid warming. The ability of cartilage preserved in this way to incorporate sulphate into newly synthesized glycosaminoglycans (GAGs) approached 70% of that of fresh control cartilage. In this method the rates of cooling and warming can be very low, which is essential for any method that is to be used in Tissue Banks to process the bulky grafts that are required by orthopaedic surgeons. Work is continuing to refine this method for Tissue Bank use.  相似文献   

4.
The limited availability of fresh osteochondral allograft tissues necessitates the use of banking for long-term storage. A vitrification solution containing a 55% cryoprotectant formulation, VS55, previously studied using rabbit articular cartilage, was evaluated using porcine articular cartilage. Specimens ranging from 2 to 6 mm in thickness were obtained from 6 mm distal femoral cartilage cores and cryopreserved by vitrification or freezing. The results of post-rewarming viability assessments employing alamarBlue demonstrated a large decrease (p < 0.001) in viability in all three sizes of cartilage specimen vitrified with VS55. This is in marked contrast with prior experience with full thickness, 0.6 mm rabbit cartilage. Microscopic examination following cryosubstitution confirmed ice formation in the chondrocytes of porcine cartilage vitrified using VS55. Experiments using a more concentrated vitrification formulation (83%), VS83, showed a significant treatment benefit for larger segments of articular cartilage. Differences between the VS55 and the VS83 treatment groups were significant at p < 0.001 for 2 mm and 4 mm plugs, and at p < 0.01 for full thickness, 6 mm plugs. The percentage viability in fresh controls, compared to VS55 and VS83, was 24.7% and 80.7% in the 2 mm size group, 18.2% and 55.5% in the 4 mm size group, and 5.2% and 43.6% in the 6 mm group, respectively. The results of this study continue to indicate that vitrification is superior to conventional cryopreservation with low concentrations of dimethyl sulfoxide by freezing for cartilage. The vitrification technology presented here may, with further process development, enable the long-term storage and transportation of living cartilage for repair of human articular surfaces.  相似文献   

5.
The effectiveness of three cryopreservation protocols (slow freezing, short equilibration vitrification and long equilibration vitrification) on in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages was compared. 199 expanded blastocysts of good quality were assigned randomly into four treatment groups [control, non-cryopreserved (fresh, unfrozen); and the three cryopreservation methods]. The re-expansion of the cryopreserved blastocysts after 24 h in vitro culture was similar to that of the fresh control group. However, the hatching rate of expanded blastocysts after 48 h culture was significantly less for the slow freezing group (31/47; 66.0%) than for both the short equilibration vitrification (46/51; 90.2%) and long equilibration vitrification groups (42/50; 84.0%). Denuded presumptive zygotes at the pronuclear stage (14–18 h post-insemination) were assigned randomly to the same four treatment groups and, following thawing, embryos were assessed for their capacity to cleave and to develop into a blastocyst. Overall, cleavage rates of cryopreserved zygotes were significantly less than those of the fresh control. The blastocyst formation rate of slow-frozen zygotes (4/81; 4.9%) was significantly less than that of zygotes subjected either to short equilibration vitrification (18/82; 22.0%) or long equilibration vitrification (16/74; 21.6%). All cryopreservation groups showed rates of blastocyst formation that were significantly less than that of the fresh control (51/92; 55.4%). Collectively, our findings indicate that vitrification is the preferred technology to cryopreserve in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages. Moreover, short equilibration vitrification technology can improve outcomes and be more efficient by taking less time to perform.  相似文献   

6.
Several species of cervids are currently classified as threatened or endangered due to a rapid decline in their populations. Sperm cryopreservation, in association with assisted reproductive technologies, can find application for the conservation of endangered cervids. In cases of unsuccessful sperm retrieval through other means prior to the death of the animal, adult testis is the only source of sperm. Recovery of viable sperm from adult testes depends on the effective preservation of testicular tissues through optimization of cryopreservation protocols. The present study evaluated combinations of 10% dimethyl sulfoxide (DMSO) with 0% or 80% fetal bovine serum (FBS) and 20% DMSO with 0 or 20% FBS for the cryopreservation of testicular tissues of three adult cervids using uncontrolled slow freezing protocol. The cryopreserved testis was compared to chilled tissue without cryoprotectants. Results revealed that testicular tissues of barking deer cryopreserved in 20% DMSO (D20) had all the analyzed 7 parameters (number of TNP1-, PRM2 and acrosin-expressing cells/tubule and, the number of viable, morphologically normal, acrosome intact, Annexin V-negative sperm) comparable to the chilled testis. However, testicular tissues of sambhar and hog deer cryopreserved only in D20S20 had 5 of 7 parameters comparable to the chilled testis. In conclusion, D20 is acceptable for cryopreservation of barking deer and D20S20 for sambar and hog deer testes.  相似文献   

7.
The cryopreservation of articular cartilage with survival of living cells has been a difficult problem. We have provided evidence that this is due to the formation of ice crystals in the chondrons. We have developed a method in which the concentration of the cryoprotectant dimethyl sulphoxide (Me(2)SO) is increased progressively, in steps, as cooling proceeds so that ice is never allowed to form, but the very high concentrations of Me(2)SO required at low temperatures are reached only at those low temperatures. In this paper, we describe some new experiments with discs of ovine articular cartilage similar to those used in our previous studies and we show that continuous stirring throughout the process resulted in a significant increase in the rate of (35)S sulphate incorporation into glycosoaminoglycans (GAGs), now reaching 87% of the corresponding fresh control values. We confirmed that the method is also effective for human knee joint cartilage, which gave 70% of fresh control ability to synthesise GAGs; continuous stirring was also used in this experiment. We then extended the method to ovine knee joint osteochondral dowels and showed that, again with continuous stirring, the method produced tissue concentrations of Me(2)SO that were sufficient to prevent freezing in dowels too, and to permit cell function at 60% of control. The most important mechanical property (instantaneous compressive modulus) was unaffected by the process. Finally, we experimented with some technical variations to facilitate clinical use-a more rapid process for warming and removal of Me(2)SO was developed and a method of short-term storage before or after cryopreservation was developed. Finally, pilot experiments were carried out to provide proof of principle for a closed, continuous flow method in which both temperature and Me(2)SO concentration were computer-controlled.  相似文献   

8.
The purpose of this study was to establish a long-term tooth cryopreservation method that can be used for tooth autotransplantation. Human periodontal ligament (PDL) cells were frozen in 10% dimethyl sulfoxide (Me2SO) using a programmed freezer with a magnetic field. Cells were cryopreserved for 7 days at −150 °C. Immediately after thawing, the number of surviving cells was counted and the cells were cultured; cultured cells were examined after 48 h. Results indicated that a 0.01 mT of a magnetic field, a 15-min hold-time, and a plunging temperature of −30 °C led to the greatest survival rate of PDL cells. Based on these findings, whole teeth were cryopreserved under the same conditions for 1 year. The organ culture revealed that the PDL cells of cryopreserved tooth with a magnetic field could proliferate as much as a fresh tooth, although the cells did not appear in the cryopreserved tooth without a magnetic field. Histological examination and the transmission electron microscopic image of cryopreserved tooth with a magnetic field did not show any destruction of cryopreserved cells. In contrast, severe cell damage was seen in cells frozen without a magnetic field. These results indicated that a magnetic field programmed freezer is available for tooth cryopreservation.  相似文献   

9.
10.
拟南芥悬浮细胞系的玻璃化法超低温保存   总被引:5,自引:1,他引:5  
悬浮培养细胞系是植物生理生化研究的好材料之一。为了保持细胞系的遗传稳定性,需要采用超低温保存技术。玻璃化法是一种不用程序降温仪的超低温保存技术。本文报道了从模式植物拟南芥建立悬浮细胞系并对其进行玻璃化法超低温研究。细胞经过合理的预培养处理和保护剂处理,直接投入液氮贮存。复温后的细胞能恢复生长,恢复生长的细胞保持着植株再生能力。国外,拟南芥悬浮细胞系的程序降温法保存和包埋脱水法保存已经报道,玻璃化法保存尚未见报道。  相似文献   

11.

Objective

To compare the effect of novel direct cover vitrification (DCV) and conventional vitrification (CV) for human ovarian tissue.

Study design

Ovarian biopsy specimens obtained from 12 patients were randomly allocated into five groups: Fresh, DCV1, DCV2, DCV3 and CV. Three concentrations of cryoprotectants were used in DCV group. The equilibration solution of DCV1, DCV2, DCV3 was 5% EG + 5% DMSO + DPBS, 7.5% EG + 7.5%DMSO + DPBS, 10% EG + 10% DMSO + DPBS, respectively. And the vitrification solution of DCV1, DCV2, DCV3 was 10% EG + 10% DMSO + DPBS, 15%EG+15% DMSO + DPBS, 20% EG + 20% DMSO + DPBS, respectively. The equilibration solution and the vitrification solution of CV group was same as DCV3 group. The effects of cryopreserved procedure on human ovarian tissue were studied by histology, TUNEL assay, transmission electron microscopy (TEM) and heterotopic allograft.

Results

The percentages of morphologically normal and viable follicles of DCV2 were significantly higher than DCV1, DCV3 and CV groups (P < 0.05). TUNEL assay demonstrated that the incidence of apoptotic cell in vitrification ovarian tissue was significantly higher than fresh tissue (P < 0.05), but there were no difference in various groups with cryopreservation. TEM showed that less damage was detected in DCV2 group. After grafting, the follicle density of DCV2 was greater than DCV1, DCV3 and CV groups (P < 0.05).

Conclusions

The novel cover vitrification with optimal concentration of cryoprotectants is superior to conventional vitrification. It is suitable for human ovarian tissue fragments with high efficiency and facility.  相似文献   

12.
Pegg DE  Wusteman MC  Wang L 《Cryobiology》2006,52(3):335-346
There is increasing interest in the possibility of treating diseased or damaged areas of synovial joint surfaces by grafts of healthy allogeneic cartilage. Such grafts could be obtained from cadaver tissue donors or in the future they might be manufactured by 'tissue engineering' methods. Cartilage is an avascular tissue and hence is immunologically privileged but to take advantage of this is the graft must contain living cells. Preservation methods that achieve this are required to build up operational stocks of grafts, to provide a buffer between procurement and use, and to enable living grafts of a practical size to be provided at the right time for patient and surgeon. Review of the literature shows that it has been relatively straightforward to cryopreserve living isolated chondrocytes, but at the present time there is no satisfactory method to preserve cartilage between the time of procurement or manufacture and surgical use. In this paper, we review the relevant literature and we confirm that isolated ovine chondrocytes in suspension can be effectively cryopreserved by standard methods yet the survival of chondrocytes in situ in cartilage tissue is inadequate and extremely variable.  相似文献   

13.
Animal tissues frozen without cryoprotection are thought to be inappropriate for use as a donor for somatic cell nuclear transfer (SCNT) studies. Cells in tissues that have been frozen without a cryoprotectant are commonly thought to be dead or to have lost genomic integrity. However, in this study we show that the frozen auricular cartilage tissues of anatolian buffalo contain a considerable number of viable healthy cells. The cells in auricular cartilage tissues are resistant to cryo-injury at −80 °C. Primary cell cultures were established from defrosted ear tissues which were frozen without cryoprotectant. The growth and functional characteristics of primary cell cultures are characterized according to cell growth curve, cell cycle analysis, karyotype and GAG synthesis. The results indicate that frozen cartilage tissues could be valuable materials for the conservation of species and SCNT technology.  相似文献   

14.
Kim GA  Kim HY  Kim JW  Lee G  Lee E  Ahn JY  Park JH  Lim JM 《Theriogenology》2011,75(6):1045-1051
This study was conducted to evaluate the interaction between cryo-damage and ART outcome after cryopreservation of mouse ovarian tissues with different methods. Either a vitrification or a slow freezing was employed for the cryopreservation of B6CBAF1 mouse ovaries and follicle growth and the preimplantation development of intrafollicular oocytes following parthenogenesis or IVF were monitored. Both cryopreservation protocols caused significant damage to follicle components, including vacuole formation and mitochondrial deformities. Regardless of the cryopreservation protocols employed, a sharp (P < 0.0001) decrease in follicle viability and post-thaw growth was detected. When IVF program was employed, significant (P < 0.05) decrease in cleavage and blastocyst formation was notable in both modes of cryopreservation. However, such retardation was not found when oocytes were parthenogenetically activated. In the IVF oocytes, slow freezing led to better development than vitrification. In conclusion, a close relationship between cryopreservation and ART methods should be considered for the selection of cryopreservation program.  相似文献   

15.
Cryopreservation of human embryos from the 2-cell stage up to the morula stage is a safe procedure which has been carried out for the last 25 years. Experience with blastocyst cryopreservation is still limited and pregnancy rates after the use of frozen, thawed blastocysts vary extremely. Vitrification has improved the success of embryo cryopreservation. However, this technique cannot yet be considered as a routine procedure. Despite all of the advantages for infertile couples, cryopreservation of human embryos creates severe ethical problems, because of surplus frozen embryos which either have to be destroyed or perhaps used for research. Embryo adoption may provide a solution to solve imminent medical, ethical and social problems.  相似文献   

16.
17.
Cartilage damage was studied using non-invasive multiphoton-excited autofluorescence and quantitative second harmonic generation (SHG) microscopy. Two cryopreservation techniques based upon freezing and vitrification methods, respectively, were employed to determine whether or not the collagen fiber structure of full thickness porcine articular cartilage was affected by cryopreservation and whether the level of collagen damage could be determined quantitatively in non-processed (non-fixed, non-sliced, non-stained) tissues. Multiphoton-induced autofluorescence imaging revealed the presence of chondrocytes, as well as collagenous structures in all fresh, vitrified and frozen cryopreserved cartilage samples. SHG imaging of the frozen cryopreserved specimens showed a dramatic loss of mean gray value intensities when compared to both fresh and vitrified tissues (< 0.05), indicating structural changes of the extracellular matrix, in particular the deformation and destruction of the collagen fibers in the analyzed articular cartilage. A 0.9974 correlation coefficient was observed between the metabolic cell activity assessed by the alamarBlue technique, and retention of collagen structure between the three experimental groups. These studies suggest that multiphoton-induced autofluorescence imaging combined with quantitative SHG signal profiling may prove to be useful tools for the investigation of extracellular matrix changes in preserved cartilage, giving insights on the structural quality prior to implantation.  相似文献   

18.
《Cryobiology》2016,73(3):191-197
Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pye's freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14 days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.1 ± 0.2 °C/min and a plunge temperature of −48.2 ± 1.5 °C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.7 ± 2.7% and a viable cell yield of 28.6 ± 2.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance.  相似文献   

19.
This review presents the methodology of using theoretic models for development of cryopreservation protocols by designing specific cooling profiles and selecting appropriate external conditions to optimize cryopreservation survival. Biophysical events during the processes of cryopreservation were examined and corresponding theoretic equations were used to simulate cryopreservation procedures under various slow cooling conditions for rat zygotes in the presence of DMSO, using a 0.25-mL plastic straw as the container. Simulation revealed three regions with their own characteristics and cryopreservation relevance. In addition, this review discusses vitrification cryopreservation using two-step additions. The effects of exposure durations and exposure temperatures on cell survival and subsequent development rates were examined in a series of cryopreservation experiments. Values of accumulative osmotic damage were used to quantitatively examine the magnitude of the associated osmotic damage during cryoprotective agent (CPA) additions and dilutions. In these investigations, oocyte blastocyst rates were highly correlated with the values of accumulative osmotic damage in the processes of CPA additions/dilutions. This review emphasizes the most essential step of the selection of the cell container in the process of cryopreservation, and provides practical suggestions and guidelines for optimizing slow cooling protocols. The review stresses that conducting CPA addition steps at 25 °C would be preferable for vitrification. It also suggests that the final dilution process needs more systematic research to optimize vitrification procedures.  相似文献   

20.
Semen cryopreservation is an increasingly demanded technique in canids, particularly in order to preserve and spread high genetic value material. Sperm vitrification may represent an interesting alternative to costly and time consuming conventional freezing. The objective of this study was to evaluate the effect of sperm vitrification on sperm morphometry and ultrastructure compared to conventional freezing. Pools of nine beagle dogs were both frozen and vitrified. Computerized morphological parameters (length, wide, area and perimeter) and sperm ultrastructure, using scanning and transmission microscopy, were analysed in both fresh and in thawed/warmed samples. There were no differences (p > 0.05) between post-thaw and fresh morphometric variables of the sperm heads. However, cluster analysis revealed that sperm-heads turned out to be smaller after thawing (p < 0.05) in two of the four subpopulations. Vitrification-warming process led to an overall increase in sperm-head size. Furthermore, the sperm head size increased after warming in two subpopulations (p < 0.05). In conclusion, the variations in the sperm head area depended on the cryopreservation procedure (conventional freezing or vitrification). Conventional freezing tended to decrease the head dimensions, at least in some subpopulations, and vitrification led to an overall increase in the sperm head size. Decondensation of chromatin and plasma membrane blebbing in the head region was observed by transmission electron microscopy in several vitrified sperm, which might explain the increase of head dimensions detected by CASA-Morph system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号