首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N B Segal  F M Guttman 《Cryobiology》1983,20(5):527-541
An in vitro perfusion system at 37 degrees C for the assessment of rabbit kidney function is described. The purpose of this assay system is to evaluate the effects of cryobiological manipulation on kidney function. The effect of the colloids dextran (MW = 70,000, 80,000, and 180,000) in the perfusate at 110 mm Hg were compared to a reduced perfusion pressure, colloid-free perfusate. Better function was obtained at lower perfusion pressure with the colloid-free perfusate. Less damage was noted histologically on light and electron microscopy. Investigation of energy substrates on rabbit kidney function demonstrated that butyrate, or lactate, in addition to glucose resulted in increased sodium and glucose reabsorption over glucose alone. Substrate-free perfused kidneys exhibited depressed Na transport. Lactate, and to some extent butyrate, decreased net glucose utilization. An alpha-adrenergic blocking agent, isoxsuprine, in the initial flush solution did not appear to be beneficial. An increase of perfusion pressure from 50 to 75 mm Hg resulted in an increase in GFR. Tubular function was enhanced by inclusion of small amounts of BSA in the perfusate.  相似文献   

2.
A.M. Karow  A.H. Jeske 《Cryobiology》1976,13(4):448-454
Rabbit kidneys were perfused at 37 °C with various concentrations of DMSO in a K+-Mg2+-rich perfusate. The effects of DMSO on various functional parameters of the rabbit kidney perfused for 60 min were compared with the functional effects of perfusion without DMSO under the same conditions. DMSO produced deviations in vascular resistance and perfusate flow rate from control values. In kidneys perfused with 1.4 and 2.8 m DMSO these vascular changes resulted in changes in GFR at relatively unchanged filtration fractions. The closely parallel relationship between changes in GFR and urine flow rate in all groups indicates that perfusion per se or perfusion with DMSO may shift the regulation of urine flow rate from tubular reabsorption, which obtains in the in vivo situation, to glomerular filtration. This view was supported by the relatively unchanged parameters of Na+ reabsorption and fractional water excretion during perfusion with all concentrations of DMSO. Additionally, DMSO perfusion resulted in significantly greater weight gains than those observed in kidneys perfused without DMSO, and significantly depressed clearances of PAH, with 2.1 and 2.8 m DMSO.  相似文献   

3.
The immediate (1 day, D1) and late (90 days, D90) effects of unilateral nephrectomy on contralateral renal hemodynamics, and the renal handling of electrolytes and water were investigated in the whole animal. The immediate and late ability of the remnant kidney to autoregulate perfusate flow and glomerular filtration rate (GFR) was studied in the isolated perfused kidney of the rat. In the whole animal, in D1 rats as compared to controls, GFR calculated for a single kidney increased from 0.85 +/- 0.3 to 1.1 +/- 0.2 ml/min (p less than 0.05). In D90 rats GFR increased further and was similar to prenephrectomy GFR (1.4 +/- 0.5 vs. 1.7 +/- 0.5 ml/min, p NS). Urinary prostanoid excretion in 24 h, calculated for one kidney, increased by 50-500% in D1 rats, but returned to prenephrectomy values in D90 rats. In the isolated perfused kidney, decreasing perfusion pressure (PP) from 100 to 70 mmHg did not change the renal vascular resistance (RVR) in control and D90 kidneys, but in D1 kidneys RVR decreased from 8.6 +/- 1.3 to 7 +/- 1.3 mm Hg/ml/min (p less than 0.05). In D90 kidneys RVR was significantly lower as compared to control and D1 kidneys at all perfusion pressures. Decreasing PP from 100 to 70 mm Hg resulted in a significant decrease in perfusion flow in control, D1 and D90 kidneys, while with the increase in PP from 100 to 130 mm Hg the perfusion flow increased significantly in all three kidney groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Current information suggests that alpha 2-adrenoceptors do not directly influence vascular resistance or Na reabsorption in the rat kidney. To reexamine the effects of alpha 2-agonists we used isolated rat kidneys perfused at 37.5 degrees C with precise measurement of renal artery pressure and flow. The recirculating perfusate contained pyruvate as the sole metabolic substrate which enabled us to use gluconeogenesis as an index of proximal tubular alpha 1-responses. Clonidine and guanfacine in 100 nM concentrations decreased phosphate excretion without altering Na, Cl, or K reabsorption or gluconeogenesis; 500 nM concentrations increased vascular resistance and decreased glomerular filtration rate and Na, Cl, and K excretion with no significant effect on gluconeogenesis. Prior thyroparathyroidectomy prevented the antiphosphaturic but not the antinatriuretic or vascular responses. Clonidine, an alpha 2-agonist with some alpha 1-activity, was a more potent vasoconstrictor than methoxamine or guanfacine. In the presence of prazosin (1 microM), norepinephrine (60 nM) stimulated phosphate reabsorption; norepinephrine alone did not stimulate phosphate reabsorption which indicates alpha 1-antagonism of this alpha 2-response to NE. These results and a literature review suggest that increased renal alpha 2-adrenoceptors could raise renal vascular resistance, reduce renin secretion, and antagonize parathyroid hormone effects on Pi, Ca, HCO3, and Na reabsorption to produce a low renin type of hypertension with increased proximal Na reabsorption and abnormal Ca and Pi excretion.  相似文献   

5.
The interaction of prostaglandin E2 (PGE2) and aspirin with the responses to peri-arterial stimulation (PS) and norepinephrine (NE) was studied in the isolated kidney of rabbit perfused through the renal artery at constant flow with Krebs' solution. NE and PS increased vascular perfusion pressure of kidney and caused a contraction on the isolated rabbit aortic strip superfused with the effluent from kidney. Addition of PGE2 to the perfusion medium decreased the PS-induced rise in perfusion pressure without changing the effect of exogenous NE. In contrast, addition of aspirin to the perfusion medium induced a potentiation of the response to PS but not to NE. These results suggest that PGE2 modulates the effect of PS probably by inhibiting the releases of NE from sympathetic nerve endings.  相似文献   

6.
To investigate blood flow autoregulation in filtering and nonfiltering kidneys, renal blood flow was determined during graded reductions in renal perfusion pressure in seven anesthetized dogs containing both a filtering and nonfiltering kidney. In each dog, one kidney was made nonfiltering by the method of EH Blaine, JO Davis, and RT Witty (Circ Res 27:1081-1089, 1970). Renal perfusion pressure was decreased from 129 to 115, 99, and 83 mm Hg by stepwise constriction of the suprarenal aorta. In filtering kidneys, the maximum decrease in renal perfusion pressure reduced renal blood flow only 20.1% of control whereas renal blood flow of nonfiltering kidneys decreased by 41.0% of control. During aortic constriction, renal vascular resistance of nonfiltering kidneys remained unchanged or slightly increased. These hemodynamic changes were associated with significantly greater autoregulation indices in nonfiltering kidneys. In eight dogs with nonfiltering kidneys, competitive inhibition of adenosine with theophylline (9 mg/kg iv) restored autoregulation of renal blood flow as shown by significant decreases in renal vascular resistance. These data indicate that in the nonfiltering kidney model, autoregulation of renal blood flow is impaired. It is suggested that this impaired autoregulatory response may result from renal ischemia and the vasoconstrictor influence of elevated intrarenal adenosine concentration.  相似文献   

7.
The effect of inhibition of prostaglandin (PG) synthesis with indomethacin on basal and isoproterenol-stimulated renin secretion was examined in the isolated perfused rabbit kidney. 6-keto PGF1 alpha' the stable metabolite of prostacyclin, was measured in urine by radioimmunoassay using 125I labelled histamine coupled to 6-keto PGF1 alpha as ligand. The level in urine, prior to isolation and perfusion of the kidney, was 10.7 +/- 5.6 ng/min, and this was reduced to 0.32 +/- 0.25 ng/min (P less than 0.05) in rabbits treated with 2.0 mg/kg of indomethacin. Renin release was markedly stimulated by intrarenal infusion of isoproterenol (0.1 microgram/min) but urinary 6-keto PGF1 alpha did not change. These responses were not affected by indomethacin treatment. Renal perfusion pressure, perfusate flow rate and consequently renal vascular resistance, remained relatively constant during the course of perfusion and were unaltered by indomethacin treatment. These results therefore do not support a role for PGs, and in particular prostacyclin, in the renin response to beta-adrenergic stimulation with isoproterenol.  相似文献   

8.
Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.  相似文献   

9.
The interaction of prostaglandin E2 (PGE2) and aspirin with the responses to peri-arterial stimulation (PS) and norepinephrine (NE) was studied in the isolated kidney of rabbit perfused through the renal artery at constant flow with Krebs' solution. NE and PS increased vascular perfusion pressure of kidney and caused a contraction on the isolated rabbit aortic strip superfused with the effluent from kidney. Addition of PGE2 to the perfusion medium decreased the PS-induced rise in perfusion pressure without changing the effect of exogenous NE. In contrast, addition of aspirin to the perfusion medium induced a potentiation of the response to PS but not to NE. These results suggest that PGE2 modulates the effect of PS probably by inhibiting the release of NE from sympathetic nerve endings.  相似文献   

10.
The existence of an intrarenal renin‐angiotensin system (RAS) in a perfused European lesser‐spotted dogfish Scyliorhinus canicula trunk preparation was examined by the inhibition of angiotensin‐converting enzyme by captopril. This resulted in a glomerular diuresis, an increase in urea and chloride clearance and excretion, and an increase in transport maxima for glucose. It is proposed that these results suggest the presence of an intrarenal RAS.  相似文献   

11.
Two isolated-perfused kidney methods were used to study the effects of hypothermic preservation on renal function in dog kidneys. The isolated-machine-perfused kidney (IMPK) used an in vitro perfusion technique--the perfusate was a Krebs-bicarbonate type delivered to the kidney at 37 degrees C by a mechanical pump at a constant pressure (100 mm Hg). The isolated-blood-perfused kidney (IBPK) utilized transplantation of the preserved kidney to the femoral vasculature. Renal function (urine analysis) was determined over a 1-hr reperfusion interval and included GFR (creatinine clearance), urine formation, and Na+ reabsorption. Kidneys preserved for only 24 hr by cold storage in either Collins'--C3 solution or in hypotonic citrate and kidneys hypothermically perfused for 24 hr demonstrated greater retention of renal function when reperfused by blood (IBPK) than with the in vitro perfusate (IMPK). The GFR was reduced by 38-58% when tested with the IBPK, but by 80-90% when tested with the IMPK. Na+ reabsorption was normal (97%) with blood reperfusion but was reduced to 36-50% in cold-stored kidneys and 82% in hypothermically perfused kidneys determined by machine reperfusion (IMPK). However, kidneys perfused for 72 hr demonstrated more similar renal functions when tested by either IMPK or IBPK. GFR was reduced to 20% (IBPK) and 11% (IMPK) and Na+ reabsorption averaged 76-85% (IBPK or IMPK). These results suggest that either reperfusion method is suitable for determining the effects of renal preservation on kidney function in kidneys preserved for 72 hr but, for short-term preserved kidneys (24 hr), the IBPK model may be preferred.  相似文献   

12.
The isolated-perfused dog kidney was used as a model to measure the effects of short-term hypothermic preservation on renal function and metabolism. Kidneys were cold-stored in Collins' solution, hypotonic citrate, or phosphate-buffered sucrose for 4 and 24 hr, or were continuously perfused for 4 and 24 hr with a synthetic perfusate. Following preservation kidneys were perfused with an albumin-containing perfusate at 37 degrees C for 60 min for determination of renal function. The results indicate that many of the effects of short-term preservation on renal function in dog kidneys are similar to results reported for rat and rabbit kidneys. Cold storage for 4 hr resulted in a large decrease in GFR (57%), but only a small decrease in Na reabsorption (from 97 to 87%). Cold storage for 24 hr caused a further decline in renal function (GFR = 95% decrease, Na reabsorption = 49-64%). Results were similar for all cold storage solutions tested. Perfusion for 4 hr was less damaging to renal function than cold storage. The GFR decreased only 14% and urine formation and Na reabsorption were practically normal. After 24 hr of hypothermic perfusion, the GFR was reduced by 79%, urine flow was normal, and Na reabsorption was 78%. There were no obvious biochemical correlates (adenine nucleotides, tissue edema, or electrolyte concentration) with the loss of renal function during short-term preservation. The results suggest that the isolated-perfused dog kidney can be used to test the effects of preservation on renal function, and yields results similar to those obtained using small animal models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vasodilatory and natriuretic effects of captopril were studied in the isolated hog kidney perfused with modified Krebs-Ringer solution. Renal arterial infusion of captopril caused increases in releases of renin, prostaglandins (PGE2, 6-keto-PGF1 alpha and PGF2 alpha) and kinin, and was accompanied by a decrease in the renal vascular resistance and an increase in urinary sodium excretion. Indomethacin administered with captopril diminished the saluretic effect of captopril and evoked an increase in kinin, but was associated with a marked decrease in prostaglandin and renin releases, while renal vascular resistance remained decreased. Indomethacin alone did not alter vascular resistance and kinin; however, renin and prostaglandin releases were decreased. Aprotinin administered with captopril showed a decrease in releases of prostaglandins, renin and kinin without any change in vascular resistance. These results suggest that increased release of kinin induced by captopril contributes to a reduction in renal vascular resistance. Increased prostaglandin release after captopril administration may be caused by an increase in kinin without direct involvement of captopril in prostaglandin synthesis. Renal prostaglandins may enhance sodium excretion and mediate renin secretion in captopril perfusion.  相似文献   

14.
M E Trimble 《Life sciences》1975,17(12):1799-1806
In the isolated perfused rat kidney, sodium reabsorption is enhanced in the presence of 5.5 mM D-glucose. However, it is unclear whether this effect is metabolic or whether it is due to a requirement for sodium transport in the process of glucose reabsorption. A third possibility is solvent drag. In an attempt to differentiate between these possibilities, kidneys were perfused with the D-glucose isomer, L-glucose (L-G), a nonmetabolizable hexose. At a perfusate concentration of 5.5 mM L-G, per cent L-G reabsorption was approximately 30. Inhibition of L-G reabsorption by D-glucose suggests carrier-mediated transport. In the presence of 5.5 mM L-G, sodium reabsorption approximated 92% during the course of perfusion. When L-G was omitted from perfusate, sodium reabsorption ultimately declined to 85%. Since significant metabolism of L-G was not observed, the results are compatible with the hypothesis that enhanced sodium reabsorption may be brought about by some still to be defined aspect of glucose transport.  相似文献   

15.
Previous studies have demonstrated that chronic dietary salt loading causes hypertension and a decreased sensitivity of the systemic vasculature to α-adrenergic stimulation and other hypertensive stimuli (e.g. hypercapnia) in rainbow trout (Oncorhynchus mykiss). This reduced sensitivity to hypertensive stimuli is consistent with a possible blunting of homeostatic responses normally aimed at raising blood pressure. To test this idea, we examined the consequences of long-term salt feeding and the associated hypertension on the interactive capacities of the renin angiotensin system (RAS) and adrenergic systems to elevate blood pressure in trout. Secretion of catecholamines in response to a range of doses of homologous ANG II in vivo and in situ (using a perfused posterior cardinal vein preparation) was reduced in the salt-fed fish. The reduced sensitivity to ANG II could not be explained by alterations in stored catecholamine (adrenaline or noradrenaline) levels or the general responsiveness of the chromaffin cells to depolarizing stimuli (60 mmol/l KCl). Despite the decreased responsiveness of the chromaffin cells to ANG II, plasma catecholamines were increased to a greater extent in the salt-fed fish during acute hypoxia (a condition that activates the RAS). Interestingly, the pressor effects of ANG II in vivo were actually heightened in the salt-fed fish. The increased pressor response to exogenous ANG II was likely attributable to its direct interaction with vascular ANG II receptors because the effect persisted even after blockade of α-adrenergic receptors. Treating fish with the vascular smooth muscle relaxant papaverine caused similar reductions in blood pressure and increases in plasma ANG II levels regardless of diet. Similarly, inhibition of angiotensin converting enzyme with lisinopril reduced blood pressure equally in control and salt-fed fish. These results indicate that, while long-term dietary salt loading blunts the response of trout chromaffin cells to ANG II, the RAS itself appears to be unaffected. Indeed, the capacity of ANG II to elevate blood pressure is not compromised nor do fish exhibit a reduced capacity to mount an acute humoral adrenergic stress response during acute hypoxia.  相似文献   

16.
To determine if chylomicron triglycerides are taken up and metabolized by the arterial wall, rabbit abdominal aortas were perfused in situ for various times up to 2 hr with blood-buffer containing isotopically labeled substrates. Labeled chylomicrons were obtained by feeding [(3)H]palmitic acid or [(3)H]glyceryl trioleate to rats and rabbits with cannulated thoracic ducts. After aortic perfusion with these chylomicrons, more than 85% of aortic lipid ester radioactivity was in triglyceride; when labeled glycerol or palmitic acid was perfused, most aortic ester lipid radioactivity was in diglycerides and phospholipids. This indicated that, during perfusion with chylomicrons, intact triglyceride molecules were taken up by aorta. The rate of triglyceride fatty acid uptake by the inner avascular segment approached maximal values at low concentrations of perfusate triglyceride fatty acids (2 mm), whereas uptake in the outer capillary perfused segment increased with increasing triglyceride fatty acid concentration (0.4-25 mm). By double-radioisotope techniques it was shown that aortic free fatty acid was derived from both perfusate free fatty acids and from hydrolysis of lipoprotein glycerides within the aortic wall. Uptake of chylomicron triglyceride by perfused aorta was independent of triglyceride hydrolysis, which was quantitatively small.  相似文献   

17.
The reflex adjustments of the peripheral circulation in response to acute coronary occlusion were studied in anesthetized dogs with isolated vascular beds perfused at constant flow. Coronary occlusion caused significant increases in perfusion pressure which averaged 27 +/- 4 mmHg in the hindlimb, 19 +/- 8 mmHg in skeletal muscle, and 13 + 5 mmHg in the mesenteric artery. These responses were less than half those caused by a similar decrease in aortic pressure obtained with hemorrhage. Coronary occlusion caused no significant changes in renal and paw circulations, while marked vasoconstriction resulted from hemorrhage. When aortic pressure was maintained constant throughout the duration of coronary occlusion, there was a significant vasodilatation in all beds studied. After vagotomy, coronary occlusion caused a constrictor response similar in magnitude to that caused by hemorrhage in each vascular bed and the dilator responses to occlusion at constant aortic pressure were abolished. Both constrictor and dilator changes were prevented by alpha-adrenergic blockade. Mechanical distension of the left ventricle in four dogs with carotid sinus nerves cut caused a significant reflexdilatation in the hindlimb. Thus, coronary occlusion initiates an inhibitory reflex mediated by vagal afferents which opposes peripheral vasoconstriction most effectively in the renal and paw circulations.  相似文献   

18.
The ability of the kidney to increase sodium and water excretion in response to increases in perfusion pressure has been recognized for more than 50 years. Because glomerular filtration rate is tightly autoregulated, pressure natriuresis occurs as the result of decreased tubular sodium reabsorption rather than increased filtered load. Micropuncture and microperfusion data support the contention that acute changes in arterial pressure can alter proximal tubule reabsorption; however, studies have failed to show a consistent association between changes in sodium excretion and peritubular, interstitial, or tubular pressures. Thus, the specific intrarenal mechanism for the change in tubular reabsorption in response to an acute change in arterial pressure does not appear to be related to the peritubular physical factors at the level of outer cortical nephrons. The possible roles of angiotensin and prostaglandins as humoral mediators of pressure natriuresis are considered in this report. Although angiotensin II is a powerful modulator of the slope of the pressure natriuresis relationship, the responsiveness of sodium excretion to arterial pressure is actually enhanced by angiotensin-converting enzyme inhibitors. These data suggest that angiotensin does not mediate the basic phenomenon. Recent experiments indicate that intrarenal prostaglandins also modulate the magnitude of the pressure natriuresis relationship, but these hormones do not appear to be essential for its basic manifestation.  相似文献   

19.
We examined the effect of endothelin-3 (ET-3) at a high dose (pressor dose) and a low dose (non-pressor dose) in rat perfused kidney (PK), since ET-3 has recently been reported to exert a vasodilator action especially at a low dose. Kidneys were perfused with Krebs-Henseleit buffer at a fixed flow rate (6 ml/min) in situ. After collection of the renal venous effluent and urine for 20 min, vehicle (saline; n = 6), 10(-13)M ET-3 (low dose; n = 6) or 10(-8) M ET-3 (high dose; n = 6) was added to the perfusate, and sample collection was performed for the same period with each. The high dose of ET-3 significantly increased the perfusion pressure, fractional sodium excretion and synthesis of prostaglandins (PGs) consistently with a significant reduction in the glomerular filtration rate (GFR). On the other hand, the low dose of ET-3 significantly increased the GFR, urine volume and free-water clearance with no change in the perfusion pressure or synthesis of PGs. These findings suggest that a low dose of ET-3 can increase the glomerular capillary ultrafiltration coefficient and that ET-3 exerts an influence on sodium and water handing in the rat PK.  相似文献   

20.
The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号