首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25 M; 10 nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50 ng; 20 nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex.  相似文献   

2.
In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.  相似文献   

3.
The presence of mu-opioid receptors and endomorphins has been demonstrated in the general area encompassing the rostral ventrolateral medullary pressor area (RVLM). This investigation was carried out to test the hypothesis that endomorphins in the RVLM may have a modulatory role in regulating cardiovascular function. Blood pressure and heart rate (HR) were recorded in urethane-anesthetized male Wistar rats. Unilateral microinjections of endomorphin-2 (0.0125-0.5 mmol/l) into the RVLM elicited decreases in mean arterial pressure (16-30 mmHg) and HR (12-36 beats/min), which lasted for 2-4 min. Bradycardia was not vagally mediated. The effects of endomorphin-2 were mediated via mu-opioid receptors because prior microinjections of naloxonazine (1 mmol/l) abolished these responses; the blocking effect of naloxonazine lasted for 15-20 min. Unilateral stimulations of aortic nerve for 30 s (at frequencies of 5, 10, and 25 pulses/s; each pulse 0.5 V and 1-ms duration) elicited depressor and bradycardic responses. These responses were significantly attenuated by microinjections of endomorphin-2 (0.2 and 0.4 mmol/l). The inhibitory effect of endomorphin-2 on baroreflex responses was prevented by prior microinjections of naloxonazine. Microinjections of naloxonazine alone did not affect either baseline blood pressure and HR or baroreflex responses. These results indicate that endomorphin-2 elicits depressor and bradycardic responses and inhibits baroreflex function when injected into the RVLM. These effects are consistent with the known hyperpolarizing effect of opioid peptides on RVLM neurons.  相似文献   

4.
The presence of endomorphin-like immunoreactivity has been reported in the nucleus tractus solitarius (NTS). It was hypothesized that endomorphins may play a role in cardiovascular regulation in the medial subnucleus of the NTS (mNTS). Endomorphin-2 (E-2, 0.1-4 mmol/l) was microinjected (100 nl) into the mNTS of urethane-anesthetized, artificially ventilated, adult male Wistar rats. E-2 (0.2 mmol/l) elicited decreases in mean arterial pressure (40 +/- 3.5 mmHg) and heart rate (50 +/- 7.0 beats/min). These responses were blocked by prior microinjections of naloxonazine (1 mmol/l) into the mNTS. Responses to microinjections of E-2 into the mNTS were abolished by prior combined microinjections of d-2-amino-7-phosphonoheptanoic acid (an NMDA receptor antagonist, 5 mmol/l) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium (a non-NMDA receptor antagonist, 2 mmol/l) into the mNTS. These results were confirmed by extracellular neuronal recordings. Blockade of GABA receptors in the mNTS by prior combined microinjections of gabazine (a GABA(A) receptor antagonist, 2 mmol/l) and 2-hydroxysaclofen (a GABA(B) receptor antagonist, 100 mmol/l) also blocked the responses to E-2. It was concluded that 1) the depressor and bradycardic responses to microinjections of E-2 into the mNTS are mediated via micro(1)-opioid receptors as well as ionotropic glutamate receptors, 2) GABAergic neurons in the mNTS, which may inhibit the release of glutamate from nerve terminals, are inhibited by E-2 via micro(1)-opioid receptors, and 3) disinhibition caused by the inhibition of GABAergic neurons by E-2 may result in an increase in the glutamate release from nerve terminals, which, in turn, may elicit depressor and bradycardic responses.  相似文献   

5.
Although the role played by the caudal ventrolateral medulla in the regulation of the cardiovascular system has been extensively investigated, little is known about the role played by this area in the regulation of airway caliber. Therefore, in alpha-chloralose-anesthetized dogs, we used both electrical and chemical means to stimulate the caudal ventrolateral medulla while we monitored changes in total lung resistance breath by breath. We found that electrical stimulation (25 microA) of 26 sites in this area significantly decreased total lung resistance from 7.1 +/- 0.4 to 5.7 +/- 0.3 cmH2O.1-1.s (P less than 0.001). The bronchodilation evoked by electrical stimulation was unaffected by beta-adrenergic blockade but was abolished by cholinergic blockade. In addition, chemical stimulation of seven sites in the caudal ventrolateral medulla with microinjections of DL-homocysteic acid (0.2 M; 66 nl), which stimulates cell bodies but not fibers of passage, also decreased total lung resistance from 8.3 +/- 1.1 to 6.5 +/- 0.8 cmH2O.l-1.s (P less than 0.01). In contrast, microinjections of DL-homocysteic acid into the nucleus ambiguus (n = 6) increased total lung resistance from 7.5 +/- 0.5 to 9.2 +/- 0.4 cmH2O.l-1.s (P less than 0.05). We conclude that the caudal ventrolateral medulla contains a pool of cell bodies whose excitation causes bronchodilation by withdrawing cholinergic input to airway smooth muscle.  相似文献   

6.
We have previously reported that chemical stimulation of the hypothalamic arcuate nucleus (ARCN) in the rat elicited increases as well as decreases in blood pressure (BP) and sympathetic nerve activity (SNA). The type of response elicited from the ARCN (i.e., increase or decrease in BP and SNA) depended on the level of baroreceptor activity which, in turn, was determined by baseline BP in rats with intact baroreceptors. Based on this information, it was hypothesized that baroreceptor unloading may play a role in the type of response elicited from the ARCN. Therefore, the effect of barodenervation on the ARCN-induced cardiovascular and sympathetic responses and the neurotransmitters in the hypothalamic paraventricular nucleus (PVN) mediating the excitatory responses elicited from the ARCN were investigated in urethane-anesthetized adult male Wistar rats. Bilateral barodenervation converted decreases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA) elicited by chemical stimulation of the ARCN with microinjections of N-methyl-D-aspartic acid to increases in MAP and GSNA and exaggerated the increases in heart rate (HR). Combined microinjections of NBQX and D-AP7 (ionotropic glutamate receptor antagonists) into the PVN in barodenervated rats converted increases in MAP and GSNA elicited by the ARCN stimulation to decreases in MAP and GSNA and attenuated increases in HR. Microinjections of SHU9119 (a melanocortin 3/4 receptor antagonist) into the PVN in barodenervated rats attenuated increases in MAP, GSNA and HR elicited by the ARCN stimulation. ARCN neurons projecting to the PVN were immunoreactive for proopiomelanocortin, alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). It was concluded that increases in MAP and GSNA and exaggeration of tachycardia elicited by the ARCN stimulation in barodenervated rats may be mediated via release of alpha-MSH and/or ACTH and glutamate from the ARCN neurons projecting to the PVN.  相似文献   

7.
The parasubthalamic nucleus (PSTN) projects extensively to the nucleus of the solitary tract (NTS); however, the function of PSTN in cardiovascular regulation is unknown. Experiments were done in alpha-chloralose anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of glutamate (10 nl, 0.25 M) activation of PSTN neurons on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). Glutamate stimulation of PSTN elicited depressor (-20.4 +/- 0.7 mmHg) and bradycardia (-26.0 +/- 1.0 beats/min) responses and decreases in RSNA (67 +/- 17%). Administration (intravenous) of atropine methyl bromide attenuated the bradycardia response (46%), but had no effect on the MAP response. Subsequent intravenous administration of hexamethonium bromide blocked both the remaining bradycardia and depressor responses. Bilateral microinjection of the synaptic blocker CoCl(2) into the caudal NTS region attenuated the PSTN depressor and bradycardia responses by 92% and 94%, respectively. Additionally, prior glutamate activation of neurons in the ipsilateral NTS did not alter the magnitude of the MAP response to stimulation of PSTN, but potentiated HR response by 35%. Finally, PSTN stimulation increased the magnitude of the reflex bradycardia to activation of arterial baroreceptors. These data indicate that activation of neurons in the PSTN elicits a decrease in MAP due to sympathoinhibition and a cardiac slowing that involves both vagal excitation and sympathoinhibition. In addition, these data suggest that the PSTN depressor effects on circulation are mediated in part through activation of NTS neurons involved in baroreflex function.  相似文献   

8.
罗萍  顾蕴辉 《生理学报》1992,44(1):31-38
实验用乌拉坦麻醉、箭毒化、人工呼吸的大鼠。将神经元胞体兴奋剂L-谷氨酸钠(Glu)微量注入顶核或前庭上核均引起血压下降;心率减慢。该顶核-和前庭上核-降压降心率反应均可被延髓头端腹外侧区内注射GABA受体阻断剂荷包牡丹碱阻断。顶核内注射普鲁卡因也能阻断Glu兴奋前庭上核的心血管反应。以上结果提示前庭-降压降心率反应可能通过顶核-延髓头端腹外侧区系统实现。静脉注射甲基阿托品也能衰减Glu兴奋顶核的心血管反应,显示迷走神经也参与前庭-顶核降压降心率反应。  相似文献   

9.
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.  相似文献   

10.
Using in vivo voltammetry to directly measure extracellular nitric oxide (NO) levels, our previous studies suggested that the neuronal NO synthase (nNOS) and cyclic guanosine monophosphate (cGMP) signal transducing systems are involved in the cardiovascular responses elicited by activation of N-methyl-D-aspartate (NMDA) receptors in the rostral ventrolateral medulla. In this study, we examined if the depressor responses elicited by activation of NMDA receptors in the caudal ventrolateral medulla (CVLM) also depend on the actions of nNOS and soluble guanylyl cyclase. In anesthetized cats, microinjection of NMDA into the CVLM produced hypotension and bradycardia associated with NO formation. These NMDA-induced responses were attenuated by prior injections of 2-amino-5-phosphonopentanoate (a NMDA receptor competitive antagonist), 7-nitroindazole (a nNOS inhibitor) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). These findings suggest that NO is also involved in the NMDA-induced depressor responses of the CVLM.  相似文献   

11.
Microinjections (100 nl) of 0.15, 0.31, 0.62, and 1.25 mmol/l of nociceptin into the medial nucleus tractus solitarius (mNTS) elicited decreases in mean arterial pressure (11 +/- 1.8, 20 +/- 2.1, 21.5 +/- 3.1, and 15.5 +/- 1.9 mmHg, respectively) and heart rate (14 +/- 2.7, 29 +/- 5.5, 39 +/- 5.2, and 17.5 +/- 3.1 beats/min, respectively). Because maximal responses were elicited by microinjections of 0.62 mmol/l nociceptin, this concentration was used for other experiments. Repeated microinjections of nociceptin (0.62 mmol/l) into the mNTS, at 20-min intervals, did not elicit tachyphylaxis. Bradycardia induced by microinjections of nociceptin into the mNTS was abolished by bilateral vagotomy. The decreases in mean arterial pressure and heart rate elicited by nociceptin into the mNTS were blocked by prior microinjections of the specific ORL1-receptor antagonist [N-Phe(1)]-nociceptin-(1-13)-NH(2) (9 mmol/l). Microinjections of the ORL1-receptor antagonist alone did not elicit a response. Prior combined microinjections of GABA(A) and GABA(B) receptor antagonists (2 mmol/l gabazine and 100 mmol/l 2-hydroxysaclofen, respectively) into the mNTS blocked the responses to microinjections of nociceptin at the same site. Prior microinjections of ionotropic glutamate receptor antagonists (2 mmol/l NBQX and 5 mmol/l d-AP7) also blocked responses to nociceptin microinjections into the mNTS. These results were confirmed by direct neuronal recordings. It was concluded that 1) nociceptin inhibits GABAergic neurons in the mNTS, 2) GABAergic neurons may normally inhibit the release of glutamate from the terminals of peripheral afferents in the mNTS, and 3) inhibition of GABAergic neurons by nociceptin results in an increase in the release of glutamate in the mNTS, which in turn elicits depressor and bradycardic responses via activation of ionotropic glutamate receptors on secondary mNTS neurons.  相似文献   

12.
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.  相似文献   

13.
A stimulation of the gigantocellular tegmental field (FTG) in the medulla oblongata often increases systemic arterial blood pressure (SAP) and decreases heart rate (HR). We investigated if the cardioinhibitory/depressor areas, including the nucleus ambiguus (NA), the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), underlied the functional expression of FTG neurons in regulating cardiovascular responses. In 73 chloralose-urethane anesthetized cats, the HR, SAP and vertebral nerve activity (VNA) were recorded. Neurons in the FTG, NA, DMV and CVLM were stimulated by microinjection of sodium glutamate (25 mM Glu, 70 nl). To study if the NA, DMV, and CVLM relayed the cardioinhibitory messages from the FTG, 24 mM kainic acid (KA, 100 nl) was used as an excitotoxic agent to lesion neurons in the NA, DMV or CVLM. We found that the cardioinhibition induced by FTG stimulation was significantly reduced by KA lesioning of the ipsilateral NA or DMV. Subsequently, a bilateral KA lesion of NA or DMV abolished the cardioinhibitory responses of FTG. Compared to the consequence of KA lesion of the DMV, only a smaller bradycardia was induced by FTG stimulation after KA lesion of the NA. The pressor response induced by Glu stimulation of the FTG was reduced by the KA lesion of the CVLM. Such an effect was dominant ipsilaterally. Our findings suggested that both NA and DMV mediated the cardioinhibitory responses of FTG. The pressor message from the FTG neurons might be partly working via a disinhibitory mechanism through the depressor neurons located in the CVLM.  相似文献   

14.
In the present study we investigated the involvement of the hypothalamic paraventricular nucleus (PVN) in the modulation of sympathoexcitatory reflex activated by peripheral and central chemoreceptors. We measured mean arterial blood pressure (MAP), heart rate (HR), renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) before and after blocking neurotransmission within the PVN by bilateral microinjection of 2% lidocaine (100 nl) during specific stimulation of peripheral chemoreceptors by potassium cyanide (KCN, 75 microg/kg iv, bolus dose) or stimulation of central chemoreceptors with hypercapnia (10% CO(2)). Typically stimulation of peripheral chemoreceptors evoked a reflex response characterized by an increase in MAP, RSNA, and PNA and a decrease in HR. Bilateral microinjection of 2% lidocaine into the PVN had no effect on basal sympathetic and cardiorespiratory variables; however, the RSNA and PNA responses evoked by peripheral chemoreceptor stimulation were attenuated (P < 0.05). Bilateral microinjection of bicuculline (50 pmol/50 nl, n = 5) into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation (P < 0.05). Conversely, the GABA agonist muscimol (0.2 nmol/50 nl, n = 5) injected into the PVN attenuated these reflex responses (P < 0.05). Blocking neurotransmission within the PVN had no effect on the hypercapnia-induced central chemoreflex responses in carotid body denervated animals. These results suggest a selective role of the PVN in processing the sympathoexcitatory and ventilatory component of the peripheral, but not central, chemoreflex.  相似文献   

15.
The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol trigger signs of REM sleep, including hippocampal theta rhythm, motor suppression, and silencing of locus coeruleus neurons. All 16 putative noradrenergic A5 cells recorded were strongly suppressed when the REM sleep-like episodes were elicited and also after intravenous clonidine. Antidromic mapping showed that none of six neurons tested projected to the XII nucleus, whereas three of five projected to the nucleus of the solitary tract and two of four to the rostral ventrolateral medulla. Bilateral microinjections of clonidine into the A5 regions did not alter XII nerve activity. These data suggest that A5 neurons are silenced during natural REM sleep. This will lead to decreased norepinephrine release and may alter synaptic transmission in the nucleus of the solitary tract and rostral ventrolateral medulla without, however, a detectable impact on XII motoneurons.  相似文献   

16.
The hypothalamic arcuate nucleus (ARCN) has been reported to play a significant role in cardiovascular regulation. It has been hypothesized that the ARCN may be one of the sites of cardiovascular actions of angiotensins (ANGs). Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. The ARCN was identified by microinjections of N-methyl-d-aspartic acid (NMDA; 10 mM). Microinjections (50 nl) of ANG-(1-12) (1 mM) into the ARCN elicited increases in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). The tachycardic responses to ANG-(1-12) were attenuated by bilateral vagotomy. The cardiovascular responses elicited by ANG-(1-12) were attenuated by microinjections of ANG II type 1 receptor (AT(1)R) antagonists but not ANG type 2 receptor (AT(2)R) antagonist. Combined inhibition of ANG-converting enzyme (ACE) and chymase in the ARCN abolished ANG-(1-12)-induced responses. Microinjections of ANG II (1 mM) into the ARCN also increased MAP and HR. Inhibition of ARCN by microinjections of muscimol (1 mM) attenuated the pressor and tachycardic responses to intravenously administered ANG-(1-12) and ANG II (300 pmol/kg each). These results indicated that 1) microinjections of ANG-(1-12) into the ARCN elicited increases in MAP, HR, and GSNA; 2) HR responses were mediated via both sympathetic and vagus nerves; 3) AT(1)Rs, but not AT(2)Rs, in the ARCN mediated ANG-(1-12)-induced responses; 4) both ACE and chymase were needed to convert ANG-(1-12) to ANG II in the ARCN; and 5) ARCN plays a role in mediating the cardiovascular responses to circulating ANGs.  相似文献   

17.
魏东  顾蕴辉 《生理学报》1989,41(5):452-458
在与上一篇论文(关于A_1区)相同的条件下,(1) 用谷氨酸钠兴奋大鼠A_5区,和A_1区类似,也产生明显的降压、降心率效应。(2) 切断双侧颈迷走神经也明显衰减兴奋A_5区的心血管作用。(3) 将不同受体阻断剂注入延髓头端腹外侧区对兴奋A_5区引起的降压,降心率反应之影响,与A_1区比较有所不同:酚妥拉明、心得安、纳洛酮和荷包牡丹碱均能明显衰减A_5区的降压、降心率效应(心得安和荷包牡丹碱甚至反转之),表明除α-,β-,GABA受体之外,阿片受体也中介A_5区的降压降心率作用。  相似文献   

18.
Previous studies have suggested that serotonergic neurons in the midbrain raphe complex have a functional topographic organization. Recent studies suggest that stimulation of a bed nucleus of the stria terminalis-dorsal raphe nucleus pathway by stress- and anxiety-related stimuli modulates a subpopulation of serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD) and caudal part of the dorsal raphe nucleus (DRC) that participates in facilitation of anxiety-like responses. In contrast, recent studies suggest that activation of a spinoparabrachial pathway by peripheral thermal or immune stimuli excites subpopulations of serotonergic neurons in the ventrolateral part of the dorsal raphe nucleus/ventrolateral periaqueducal gray (DRVL/VLPAG) region and interfascicular part of the dorsal raphe nucleus (DRI). Studies support a role for serotonergic neurons in the DRVL/VLPAG in inhibition of panic-like responses, and serotonergic neurons in the DRI in antidepressant-like effects. Thus, data suggest that while some subpopulations of serotonergic neurons in the dorsal raphe nucleus play a role in facilitation of anxiety-like responses, others play a role in inhibition of anxiety- or panic-like responses, while others play a role in antidepressant-like effects. Understanding the anatomical and functional properties of these distinct serotonergic systems may lead to novel therapeutic strategies for the prevention and/or treatment of affective and anxiety disorders. In this review, we describe the anatomical and functional properties of subpopulations of serotonergic neurons in the dorsal raphe nucleus, with a focus on those implicated in symptoms of anxiety and affective disorders, the DRD/DRC, DRVL/VLPAG, and DRI.  相似文献   

19.
The cardiovascular and sympathetic effects of TRH in discrete cardiovascular-related brain nuclei were studied. Microinjections of TRH were made into the nucleus preopticus medialis (POM) of conscious rats and the nucleus tractus solitarius (NTS) of pentobarbitone-anesthetized, artificially respired rats. POM injections (1 μl, 0.8–80 nM) elicited dose dependent pressor and tachycardic responses which were accompanied by increased levels of norepinephrine (NE) and epinephrine (EPI) in the plasma. These pressor/tachycardic effects of TRH were also elicited in adrenal demedullated (ADM-x) rats, but completely abolished in ADM-x rats pretreated with bretylium (30 mg/kg, IA). NTS injections (0.1 μl, 30 and 150 nM) had a short depressor effect on blood pressure (BP) and a delayed increase in heart rate (HR). From these findings we suggest that the POM, a central nucleus in the AV3V region, may be an important forebrain site for autonomic regulation by TRH, mediated through the sympathetic nervous system.  相似文献   

20.
Urocortins are members of the hypothalamic corticotropin-releasing factor (CRF) peptide family. Urocortin1 (UCN1) mRNA has been reported to be expressed in the brainstem neurons. The present investigation was carried out to test the hypothesis that microinjections of UCN1 into the nucleus ambiguus (nAmb) may elicit cardiac effects. Urethane-anesthetized, artificially ventilated, adult male Wistar rats, weighing between 300-350 g, were used. nAmb was identified by microinjections of l-glutamate (5 mM, 30 nl). Microinjections (30 nl) of different concentrations (0.062, 0.125, 0.25, and 0.5 mM) of UCN1 into the nAmb elicited bradycardic responses (26.5 ± 1, 30.1 ± 1.7, 46.9 ± 1.7, and 40.3 ± 2.6 beats/min, respectively). These heart rate responses were not accompanied by significant changes in mean arterial pressure. The bradycardic responses to maximally effective concentration of UCN1 (0.25 mM) were significantly (P < 0.05) attenuated by prior microinjections of a selective antagonist (NBI 27914, 1.5 mM) for CRF type 1 receptor (CRF1R). Prior microinjections of ionotropic glutamate receptor (iGLUR) antagonists [d-(-)-2-amino-7-phosphono-heptanoic acid and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-(f)quinoxaline-7-sulfonamide disodium] also attenuated the bradycardia elicited by UCN1 microinjections into the nAmb. Microinjections of NBI 27914 (1.5 mM) into the nAmb did not alter baroreflex responses. Bilateral vagotomy abolished the bradycardic responses to microinjections of UCN1 into the nAmb. These results indicated that 1) microinjections of UCN1 into the nAmb elicited bradycardia, 2) the bradycardia was vagally mediated, 3) activation of CRF1Rs in the nAmb was responsible for the actions of UCN1, and 4) activation of iGLURs in the nAmb also participated in the bradycardia elicited by UCN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号