首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Somatic embryos of jack, a Glycine max (L.) Merrill cultivar, were transformed using microprojectile bombardment with a synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt cryIAc) driven by the 35S promoter and linked to the HPH gene. Approximately 10 g of tissue was bombarded, and three transgenic lines were selected on hygromycin-containing media and converted into plants. The recovered lines contained the HPH gene, but the Bt gene was lost in one line. The plasmid was rearranged in the second line, and the third line had two copies, one of which was rear-ranged. The CryIAc protein accumulated up to 46 ng mg-1 extractable protein. In detached-leaf bioassays, plants with an intact copy of the Bt gene, and to a lesser extent those with the rearranged copy, were protected from damage from corn earworm (Helicoverpa zea), soybean looper (Pseudoplusia includens), tobacco budworm (Heliothis virescens), and velvetbean caterpillar (Anticarsia gemmatalis). Corn earworm produced less than 3% defoliation on transgenic plants, compared with 20% on the lepidopteran-resistant breeding line GatIR81-296, and more than 40% on susceptible cultivars. Unlike previous reports of soybean transformation using this technique, all plants were fertile. To our knowledge, this is the first report of a soybean transgenic for a highly expressed insecticidal gene.  相似文献   

2.
A QTL conditioning corn earworm resistance in soybean PI 229358 and asynthetic Bacillus thuringiensis cry1Ac transgene from therecurrent parent Jack-Bt were pyramided intoBC2F3 plants by marker-assisted selection. Segregatingindividuals were genotyped at SSR markers linked to an anitbiosis/antixenosisQTL on linkage group M, and were tested for the presence ofcry1Ac. Marker-assisted selection was used during andafter the two backcrosses to develop a series of BC2F3plants with or without the crylAc transgene and the QTLconditioning for resistance BC2F3 plants that werehomozygous for parental alleles at markers on LG M, and whicheither had or lacked cry1Ac, were assigned to one of fourpossible genotype classes. These plants were used in no-choice, detached leaffeeding bioassays with corn earworm and soybean looper larvae (Lepidoptera:Noctuidae) to evaluate the relative antibiosis in the different genotypeclasses. Resistance was measured as larval weight gain and degree of foliageconsumption. Few larvae of either species survived on leaves expressing theCry1Ac protein. Though not as great as the effect of Cry1Ac, the PI229358-derived LG M QTL also had a detrimental effect on larval weights of bothpest species, and on defoliation by corn earworm, but did not reduce defoliation bysoybean looper. Weights of soybean looper larvae fed foliage from transgenicplants with the PI-derived QTL were lower than those of larvae fed transgenictissue with the corresponding Jack chromosomal segment. This work demonstratesthe usefulness of SSRs for marker-assisted selection in soybean, and shows thatcombining transgene-and QTL-mediated resistance to lepidopteran pests may be aviable strategy for insect control.  相似文献   

3.
A QTL that enhances and broadens Bt insect resistance in soybean   总被引:5,自引:0,他引:5  
Effective strategies are needed to manage insect resistance to Bacillus thuringiensis (Bt) proteins expressed in transgenic crops. To evaluate a multiple resistance gene pyramiding strategy, eight soybean (Glycine max) lines possessing factorial combinations of two quantitative trait loci (QTLs) from plant introduction (PI) 229358 and a synthetic Bt cry1Ac gene were developed using marker-assisted selection with simple sequence repeat markers. Field studies were conducted in 2000 and 2001 to evaluate resistance to corn earworm (Helicoverpa zea) and soybean looper (Pseudoplusia includens), and detached leaf bioassays were used to test antibiosis resistance to Bt-resistant and Bt-susceptible strains of tobacco budworm (TBW; Heliothis virescens). Based on defoliation in the field and larval weight gain on detached leaves, lines carrying a combination of cry1Ac and the PI 229358 allele at a QTL on linkage group M were significantly more resistant to the lepidopteran pests, including the Bt-resistant TBW strain, than were the other lines. This is the first report of a complementary additive effect between a Bt transgene and a plant insect resistance QTL with an uncharacterized mode of action that was introgressed using marker-assisted selection.  相似文献   

4.
Soybean looper, Chrysodeixis includens (Walker), is one of the most destructive pests of soybean in the southern U.S. Soybean looper defoliation exceeding 20% from R3 (pod initiation) to R5 (pod fill) can result in significant yield loss. In addition, soybean looper is highly resistant to many insecticides. An alternative to insecticide control is induced host plant resistance. In this study, a total of four experiments over 2 years were conducted in which three different elicitors of SAR (systemic acquired resistance), Actigard 50WG (acibenzolar-S-methyl), Regalia (extract of Reynoutria sachalinensis), and methyl jasmonate (MeJA), were applied to soybean at different plant stages to determine if these chemicals could induce plant resistance and lower soybean looper fitness. None of the elicitors of SAR significantly affected soybean looper mortality. However, Actigard 50WG, MeJA, and Regalia had adverse effects on developmental time, defoliation, and pupal weight of soybean looper. Induced effects by Regalia on soybean looper were very limited compared to Actigard 50WG and MeJA. A single application of MeJA reduced pupal weight by 6.8% and delayed larval development by 14.3%. Soybean seed production was not affected by application of elicitors. In conclusion, the results suggest that exogenous elicitors applied in the field can trigger plant resistance against herbivores and this low level of host plant resistance may effectively lessen pest pressure by favoring natural enemy population regulation without reducing seed production.  相似文献   

5.
Five insecticide synergists, all of which were either methylenedioxyphenyl compounds or analogs, were compared as to their effect on cytochrome P450 monooxygenase induction caused by an allelochemical in fall armyworm larvae. Feeding the synergists (piperonyl butoxide, safrole, isosafrole, MGK 264, and myristicin) individually to the larvae caused decreases in the microsomal aldrin epoxidase activities ranging from 38% to 74% when compared with controls. Feeding indole-3-carbinol resulted in a 4-fold increase in the microsomal epoxidase activity. However, cotreatment of any of the synergists and the inducer completely eliminated the induction. Sixth instar larvae were more inducible than second instar larvae with respect to microsomal epoxidase and glutathione transferase in the fall armyworm. Enzyme inducibility varied widely among the seven phytophagous Lepidoptera examined. When indole-3-carbinol was used as an inducer of microsomal epoxidase, the extent of inducibility of the enzyme was fall armyworm > velvetbean caterpillar > corn earworm > beet armyworm > tobacco budworm > cabbage looper > diamondback moth. When indole-3-acetonitrile was used as an inducer, the inducibility of glutathione transferase was fall armyworm > beet armyworm > corn earworm > cabbage looper > velvetbean caterpillar > tobacco budworm > diamondback moth. Inducibility of five microsomal oxidase systems also varied considerably in the corn earworm, indicating the multiplicity of cytochrome P450 in this species. Microsomal epoxidase and glutathione transferase were induced by cruciferous host plants such as cabbage and their allelochemicals in diamondback moth larve. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Summary Lepidopteran insects are major defoliating pests of soybean in the southeastern United States. Soybean plants transgenic for a nativecryIA(b) gene fromBacillus thuringiensis var.kurstaki HD-1 were obtained. Embryogenic cultures were induced by plating cotyledons on a Murashige and Skoog-based medium supplemented with 40 mg/liter of 2,4-dichlorophenoxyacetic acid (2,4-D). The embryogenic cultures were maintained in liquid medium containing 5 mg/liter 2,4-D. These cultures were subjected to microprojectile bombardment, followed by selection on 50 mg/liter hygromycin. Resistant embryogenic cell lines were transferred to growth regulator-free medium to permit recovery of mature somatic embryos. After a desiccation period, the somatic embryos were returned to growth regulator-free medium for conversion into plants. Southern hybridization analysis verified transformation. Feeding assays of T1 plants from one cell line deterred feeding, development, and survival of velvetbean caterpillar at a level comparable to that of GatIR81-296, a soybean breeding line with a high level of insect resistance. Reduced feeding on T1 plants correlated with the presence of the transgene.  相似文献   

7.
Zygotic hypocotyls of canola (Brassica napus L.) cv Oscar, cv Westar, and the breeding line UGA188-20B were transformed with a truncated synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt cryIAc) under the control of the cauliflower mosaic virus 35S promoter using Agrobacterium tumefaciens-mediated transformation. Fifty-seven independently transformed lines were produced, containing 1 to 12 copies of the transgenes. A range of cry expressors was produced from 0 to 0.4% Cry as a percentage of total extractable protein. The Brassica specialists, the diamondback month (Plutella xylostella L.) and the cabbage looper (Trichoplusia ni Hubner), were completely controlled by low-, medium-, and high-expressing lines. Whereas control of the generalist lepidopteran, the corn earworm (Helicoverpa zea Boddie), was nearly complete, the other generalist caterpillar tested, the beet armyworm (Spodoptera exigua Hubner), showed a dose response that had a negative association between defoliation and cry expression. These plants were produced as models for an ecological research assessment of the risk involved in the field release of naturalized transgenic plants harboring a gene (Bt) that confers higher relative fitness under herbivore-feeding pressure.  相似文献   

8.
The development of superior soybean, Glycine max (L.) Merr., cultivars exhibiting resistance to insects has been hindered due to linkage drag, a common phenomenon when introgressing alleles from exotic germplasm. Simple-sequence repeat (SSR) markers were used previously to map soybean insect resistance (SIR) quantitative trait loci (QTLs) in a'Cobb' X PI 229358 population, and subsequently used to create near-isogenic lines (NILs) with SIR QTL i n a 'Benning' genetic background. SIR QTLs were mapped on linkage groups (LGs) M (SIRQTL-M), G (SIRQTL-G), and H (SIRQTL-H). The objectives of this study were to 1) evaluate linkage drag for seed yield by using Benning-derived NILs selected for SIRQTL-M, SIRQTL-H, and SIRQTL-G; 2) assess the amount of PI 229358 genome surrounding the SIR QTL in each Benning NIL; and 3) evaluate the individual effects these three QTLs on antibiosis and antixenosis to corn earworm, Helicoverpa zea (Boddie), and soybean looper, Pseudoplusia includens (Walker). Yield data collected in five environments indicated that a significant yield reduction is associated with SIRQTL-G compared with NILs without SIR QTL. Overall, there was no yield reduction associated with SIRQTL-M or SIRQTL-H. A significant antixenosis and antibiosis effect was detected for SIRQTL-M in insect feeding assays, with no effect detected in antixenosis or antibiosis assays for SIRQTL-G or SIRQTL-H without the presence of PI 229358 alleles at SIRQTL-M. These results support recent findings concerning these loci.  相似文献   

9.
Conventional soybean weed management and transgenic herbicide-tolerant management were examined to assess their effects on soybean insect pest populations in south Georgia in 1997 and 1998. Soybean variety had very little impact on the insect species observed, except that maturity group effects were observed for stink bug, primarily Nezara viridula (L.), population densities on some sampling dates. Stink bugs were more abundant on the early maturing varieties in mid-season. Velvetbean caterpillar, Anticarsia gemmatalis Hübner, potato leafhopper, Empoasca fabae (Harris), and grasshoppers Melanoplus spp. were more numerous on either conventional or herbicide-tolerant varieties on certain dates, although these differences were not consistent throughout the season. Soybean looper, Pseudoplusia includens (Walker), threecornered alfalfa hopper, Spissistilus festinus (Say), and whitefringed beetles, Graphognathus spp , demonstrated no varietal preference in this study. Few weed treatment differences were observed, but if present on certain sampling dates, then pest numbers were higher in plots where weeds were reduced (either postemergence herbicides or preplant herbicide plus postemergence herbicide). The exception to this weed treatment effect was grasshoppers, which were more numerous in weedy plots when differences were present. In post emergence herbicide plots, there were no differences in insect pest densities between the conventional herbicides (e.g., Classic, Select, Cobra, and Storm) compared with specific gene-inserted herbicide-tolerant materials (i.e., Roundup and Liberty). Defoliation, primarily by velvetbean caterpillar, was different between soybean varieties at some test sites but not different between herbicide treatments. We did not observe differences in seasonal abundance of arthropod pests between conventional and transgenic herbicide-tolerant soybean.  相似文献   

10.
Summary Cell lines from selected lepidopteran species were established for the overall purpose of use in baculovirus production. A total of 36 new cell lines from 10 lepidopteran species were generated, including cell lines from a pyralid, the European corn borer,Ostrinia nubilalis, a plutellid, the diamondback moth,Plutella xylostella, as well as eight noctuids: the black cutworm,Agrotis ipsilon, the celery looper,Anagrapha falcifera, the velvetbean caterpillar,Anticarsia gemmatalis, the corn earworm,Helicoverpa zea, the tobacco budworm,Heliothis virescens, the beet armyworm,Spodoptera exigua, the fall armyworm,Spodoptera frugiperda, and the cabbage looper,Trichoplusia ni. Tissues used for cell line establishment included fat bodies, ovaries, testes, or whole embryos/larvae/pupae. All the cell lines were subcultured numerous times, characterized by isoenzyme analysis and/or deoxyribonucleic acid amplification fingerprinting using polymerase chain reaction, and stored in liquid nitrogen. Many of the cell lines were adapted to grow in serum-free medium, with cell lines fromA. ipsilon andH. virescens being adapted to suspension culture, using shaker flasks. The potential use for these cell lines in baculovirus production is discussed. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion sex, age, marital status, or handicap.  相似文献   

11.
Studies during the past 5 yr have shown that the overall level of protein (Cry1Ac) produced from the cry1Ac transgene (Monsanto Co., St. Louis, MO) differ among commercial Bollgard cotton, Gossypium hirsutum L., cultivars. These differences between cultivars are under genetic control and have been correlated with efficacy of certain lepidopteran pests. Previous studies have shown that the parental background (i.e., non-Cry1Ac conventional cultivar) has a significant influence on the amount of Cry1Ac protein in Bollgard cultivars. Unlike the backcross technique commonly used to acquire commercial Bollgard cultivars, we used forward breeding to obtain cultivars of Bollgard cotton that were selected for various levels of Cry1Ac. These differences in the amount of Cry1Ac were correlated with growth and survival of two lepidopteran pests of cotton. Implications for effective resistance management as well as relative ease of this procedure are discussed.  相似文献   

12.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

13.
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is one of the main corn pests and Bacillus thuringiensis is important in its control because of its entomopathogenic property. The objective of this study was the molecular characterization of B. thuringiensis isolates for cry1 locus presence and the assessment of the efficiency of these isolates in controlling S. frugiperda caterpillars. Gral-cry1 was used in the PCR analyses to confirm the presence of the cry1 locus in 15 isolates. A 3 x 10(8) spore/ml suspension bathed the diet used to feed 30 caterpillars per isolate, with three replications. The cry1 locus type genes of the different isolates were identified for five gene subclasses; linear regression analyses were carried out to ascertain possible associations between the presence of an individual cry1 locus gene and high levels of toxicity. All the DNAs amplified with Gral-cry1 presented an amplification product with the expected size. Regarding the levels of insecticide efficiency against the cob worm, 41 isolates presented 100% mortality and 16 presented an index between 70% and 90%. The cry1Ab gene was present in 80 isolates, cryb in 69 isolates, cry1Ac in all the isolates and cryv and cry1E in 93 and 27 isolates, respectively. The values regarding the individual effect of each gene on caterpillar mortality were significant at 1% probability for the cry1Ac and cry1E genes.  相似文献   

14.
The crystal proteins coded by transgenes from Bacillus thuringiensis (Bt) have shown considerable value in providing effective insect resistance in a number of crop species, including soybean, Glycine max (L.) Merr. Additional sources of soybean insect resistance would be desirable to manage the development of tolerance/resistance to crystal proteins by defoliating insects and to sustain the deployment of Bt crops. The objective of this study was to evaluate the effects and interactions of three insect resistance quantitative trait loci (QTLs; QTL-M, QTL-H, and QTL-G) originating from Japanese soybean PI 229358 and a cry1Ac gene in a “Benning” genetic background. A set of 16 BC6F2-derived near isogenic lines (NILs) was developed using marker-assisted backcrosses and evaluated for resistance to soybean looper [SBL, Pseudoplusia includens (Walker)] and corn earworm [CEW, Helicoverpa zea (Boddie)] in field cage, greenhouse, and detached leaf assays. Both Bt and QTL-M had significantly reduced defoliation by both SBL and CEW and reduced larval weight of CEW. The antibiosis QTL-G had a significant effect on reducing CEW larval weight and also a significant effect on reducing defoliation by SBL and CEW in some assays. The antixenosis QTL-H had no main effect, but it appeared to function through interaction with QTL-M and QTL-G. Adding QTL-H and QTL-G further enhanced the resistance of the Bt and QTL-M combination to CEW in the field cage assay. These results should help guide the development of strategies for effective management of insect pests and for sustainable deployment of Bt genes.  相似文献   

15.
Transgenic lines of soybean, Glycine max (L.) Merrill, expressing a synthetic cry1A gene (tic107) from Bacillus thuringiensis (Bt), were evaluated in screenhouse and conventional field trials for efficacy against lepidopteran pests. In screenhouse trials, Bt soybean and negative checks (isogenic segregants and parental lines) were evaluated against Anticarsia gemmatalis Hübner and Pseudoplusia includens (Walker) in the United States and against A. gemmatalis, Epinotia aporema (Walsingham), Rachiplusia nu (Guenée), and Spilosoma virginica (F.) in Argentina. Bt soybean exhibited virtually complete efficacy against each of these pests, whereas negative checks suffered significant damage. Bt soybean and negative checks also were evaluated in conventional trials against native populations of A. gemmatalis and P. includens in the southeastern United States. Each of these insects caused significant damage to negative checks in one or more locations, whereas Bt soybean exhibited virtually complete efficacy against these pests. In the laboratory, lyophilized leaf tissues from Bt soybean incorporated in artificial diet at a concentration representing a 25-fold dilution of fresh tissue caused complete mortality of A. gemmatalis and near complete mortality of P. includens neonates after 11 d, whereas mortality on negative checks did not exceed 10% for either insect. Average TIC107 expression approached or exceeded 50 microg/g fresh weight at V3 stage of growth and 200 microg/g by R6 stage of growth. These results demonstrate that expression of TIC107 in soybean can not only achieve highly efficacious control of several lepidopterans under field conditions but also provide a high dose for effective insect resistance management.  相似文献   

16.
Many of the lepidopterous insects which attack sweet corn, Zea mays L., are susceptible to insecticidal proteins produced by Bacillus thuringiensis ssp. kurstaki (Berliner) (Btk). Transgenic sweet corn expressing a synthetic cry gene for production of a Btk-insecticidal protein may provide a more environmentally acceptable means of sweet corn production. Eight transgenic sweet corn hybrids containing a synthetic gene for CryIA(b) protein production (BT11 event) were evaluated for resistance to the corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith). Laboratory tests revealed that all Btk sweet corn hybrids were highly resistant to leaf and silk feeding by neonate 3 and 6 d old corn earworm larvae. Ear damage in the field to the Btk sweet corn hybrids caused by corn earworm was negligible. All Btk sweet corn hybrids, except Btk 95-0901, were moderately resistant to leaf and silk feeding by the fall armyworm. Survival and weight gain were reduced when neonates were fed excised whorl leaves of the Btk plants. Weight gain, but not survival, was reduced when 3- and 6-d-old fall armyworm larvae were fed excised whorl leaves of the Btk plants. Btk sweet corn hybrids appear to be ideal candidates for use in integrated pest management (IPM) programs for both the fresh and processing sweet corn markets, and their use should drastically reduce the quantity of insecticides currently used to control these pests in sweet corn. With appropriate cultural practices, it is highly unlikely that Btk sweet corn will contribute to the development of resistance to Btk proteins in these insects because of the high toxicity of the Cry proteins expressed in these sweet corn hybrids and the harvest of sweet corn ears from fields before larvae can complete development.  相似文献   

17.
18.
Larvae of the Old World corn earworm, Helicoverpa armigera (Hübner), were fed diets containing lyophilized silks from maize genotypes expressing varying levels of maysin, a flavone glycoside known to be toxic to the New World corn earworm, Helicoverpa zea Boddie. Three different H. armigera colonies were tested: a wild-type colony (96-S), a colony selected for resistance to deltamethrin (Del-R), and a colony selected for resistance to the Cry1Ac protoxin of Bacillus thuringiensis (Bt-R). A colony of H. zea was also tested as a control. High-maysin silk diets significantly slowed the growth and arrested the development of larvae from all H. armigera colonies compared with low-maysin silk diets, maysin-lacking silk diets, and no-silk control diets. The effects on the H. armigera and H. zea colonies were similar across maysin levels, although H. zea is a larger insect than H. armigera and this overall size difference was observed. Among the H. armigera colonies, maysin effects were generally similar, although 7-d-old Del-R larvae were significantly smaller than 7-d-old Bt-R and 96-S larvae for one no-silk control and two maysin-containing silk treatments. The toxic effect of maysin on the Bt-R and Del-R colonies suggests that physiological mechanisms of H. armigera resistance to Cry1Ac and deltamethrin do not confer cross-resistance to maysin.  相似文献   

19.
Feeding and maturation by the soybean looper, Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae), were investigated in a 2-yr study on 'Davis' soybean, Glycine max (L.) Merr., grown alone and combined with the weed hemp sesbania, Sesbania exaltata (Raf.) Rybd. ex. A. W. Hill, the root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, and the charcoal rot fungus, Macrophomina phaseolina (Tassi) Goid. Of the three pests, hemp sesbania had the greatest effects on plant growth and insect feeding and maturation. When fed foliage from soybean stressed by hemp sesbania, soybean looper larvae remained longer in feeding stages, consumed more foliage, and showed altered weight gain compared with larvae fed control foliage. Results suggest that nutrient (s) critical for proper development of larvae may have been limited in weed-stressed soybean foliage. Less dramatic results were observed when larvae fed on foliage from soybean with roots colonized by the charcoal rot fungus. Such larvae consumed more foliage, weighed more, and showed a slight increase in larval feeding period, but only in 1 yr of the study. Colonization of soybean roots by the root-knot nematode had no consistent effects on either the soybean host or insect.  相似文献   

20.
Transgenic cotton, Gossypium hirsutum L., lines expressing both Cry1F and Cry1Ac insecticidal proteins from Bacillus thuringiensis (Bt) have been commercially available in the United States since 2005. Both Bt proteins are highly effective against tobacco budworm, Heliothis virescens (F.), and other lepidopteran pests of cotton. Although CrylAc has been available in Bt cotton since 1996, the Cry1F component is relatively new. As part of the proactive resistance management program for Cry1F/Cry1Ac cotton, a susceptibility-monitoring program is being implemented. Baseline variation in the susceptibility to Cry1F in field populations of tobacco budworm was measured. There was a three-fold variation in the amount of Cry1F needed to kill 50% of the neonates from 15 different field populations from the southern and central United States. Future variation in susceptibility of tobacco budworm populations to Cry1F or even resistance evolution could be documented based on this baseline data. A candidate diagnostic concentration was determined that may be efficiently used to identify individuals that potentially carry major alleles conferring field-relevant resistance to Cry1F before such alleles spread through field populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号