首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acute ethanol exposure induces oxidative stress and apoptosis in primary rat hepatocytes. Previous data indicate that the mitochondrial permeability transition (MPT) is essential for ethanol-induced apoptosis. However, the mechanism by which ethanol induces the MPT remains unclear. In this study, we investigated the role of Bax, a proapoptotic Bcl-2 family protein, in acute ethanol-induced hepatocyte apoptosis. We found that Bax translocates from the cytosol to mitochondria before mitochondrial cytochrome c release. Bax translocation was oxidative stress dependent. Mitochondrial Bax formed a protein complex with the mitochondrial voltage-dependent anion channel (VDAC). Prevention of Bax-VDAC interactions by a microinjection of anti-VDAC antibody effectively prevented hepatocyte apoptosis by ethanol. In conclusion, these data suggest that Bax translocation from the cytosol to mitochondria leads to the subsequent formation of a Bax-VDAC complex that plays a crucial role in acute ethanol-induced hepatocyte apoptosis.  相似文献   

2.
Endoplasmic reticulum (ER) stress induces apoptosis by mechanisms that are not fully clear. Here we show that ER stress induced by the Ca(2+)-ATPase inhibitor thapsigargin (THG) activates cytochrome c-dependent apoptosis through cooperation between Bax and the mitochondrial permeability transition (MPT) in human leukemic CEM cells. Pharmacological inhibition of the MPT as well as small interfering RNA (siRNA) knockdown of the MPT core component cyclophilin D blocked cytochrome c release and caspase-dependent apoptosis but did not prevent Bax activation, translocation or N-terminal exposure in mitochondria. siRNA knockdown of Bax also blocked THG-mediated cytochrome c release and apoptosis, but did not prevent MPT activation and resulted in caspase-independent cell death. Our results show that ER-stress-induced cell death involves a caspase and Bax-dependent pathway as well as a caspase-independent MPT-directed pathway.  相似文献   

3.
Induction of cell death in HeLa cells with TNF and cycloheximide (CHX) required an adequate ATP supply and was accompanied by decrease in intracellular pH, translocation of Bax, perinuclear clustering of the mitochondria, and cytochrome c release. The chloride channel inhibitor furosemide prevented the intracellular acidification, the translocation of Bax and the cell death. Cyclosporin A (CyA) or bongkrekic acid (BK) inhibited the induction of the MPT, the release of cytochrome c and the cell death without affecting the perinuclear clustering of the mitochondria or the translocation of Bax. Energy depletion with the ATP synthase inhibitor oligomycin or the uncoupler FCCP in the presence of 2-deoxy-glucose prevented the perinuclear clustering of the mitochondria and the cell killing. However, mitochondrial translocation of Bax was still observed. By contrast, cytochrome c was released in the oligomycin-treated cells but not in the same cells treated with FCCP. The data demonstrate that apoptosis in HeLa cells is ATP dependent and requires the translocation of Bax. The movement of Bax to the mitochondria occurs before and during the perinuclear clustering of these organelles and does not require the presence of ATP. The release of cytochrome c depends on the induction of the mitochondrial permeability transition but not ATP content.  相似文献   

4.
Treatment of L929 fibroblasts by the topoisomerase II inhibitor etoposide killed 50% of the cells within 72 h. The cell killing was preceded by the release of cytochrome c from the mitochondria. Simultaneous treatment of the cells with wortmannin, cycloheximide, furosemide, cyclosporin A, or decylubiquinone prevented the release of cytochrome c and significantly reduced the loss of viability. Etoposide caused the phosphorylation of p53 within 6 h, an effect prevented by wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK). The activation of p53 by etoposide resulted in the up-regulation of the pro-apoptotic protein Bax, a result that was prevented by the protein synthesis inhibitor cycloheximide. The increase in the content of Bax was followed by the translocation of this protein from the cytosol to the mitochondria, an event that was inhibited by furosemide, a chloride channel inhibitor. Stably transfected L929 fibroblasts that overexpress Akt were resistant to etoposide and did not translocate Bax to the mitochondria or release cytochrome c. Bax levels in these transfected cells were comparable with the wild-type cells. The release of cytochrome c upon translocation of Bax has been attributed to induction of the mitochondrial permeability transition (MPT). Cyclosporin A and decylubiquinone, inhibitors of MPT, prevented the release of cytochrome c without affecting Bax translocation. These data define a sequence of biochemical events that mediates the apoptosis induced by etoposide. This cascade proceeds by coupling DNA damage to p53 phosphorylation through the action of DNA-PK. The activation of p53 increases Bax synthesis. The translocation of Bax to the mitochondria induces the MPT, the event that releases cytochrome c and culminates in the death of the cells.  相似文献   

5.
Treatment of fetal rat hepatocytes with transforming growth factor beta (TGF-beta) is followed by apoptotic cell death. Analysis of radical oxygen species (ROS) content and mitochondrial transmembrane potential (Deltapsim), using specific fluorescent probes in FACScan and confocal microscopy, showed that TGF-beta mediates ROS production that precedes the loss of Deltapsim, the release of cytochrome c, and the activation of caspase 3. TGF-beta induces a decrease in the protein and mRNA levels of bcl-xL, an antiapoptotic member of the Bcl-2 family. In contrast, there is no change in the expression and/or translocation of Bax, a proapoptotic member of the same family. EGF maintains Bcl-xL, preventing Deltapsim collapse and release of cytochrome c. The presence of radical scavengers blocks the decrease in bcl-xL levels, Deltapsim collapse, cytochrome c release, and activation of caspase 3; in contrast, the presence of glutathione synthesis inhibitors such as BSO accentuated the effect. The incubation of fetal hepatocytes in the presence of ter-butyl-hydroperoxide alone produces a decrease in bcl-xL. These results indicate that during the apoptosis mediated by TGF-beta in fetal hepatocytes, ROS may be responsible for the decrease in bcl-xL mRNA levels that precedes the loss of Deltapsim, the release of cytochrome c, and the activation of caspase 3, culminating in cell death.  相似文献   

6.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

7.
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.  相似文献   

8.
Mitochondrial permeability transition (MPT) and cytochrome c redistribution from mitochondria are two events associated with apoptosis. We investigated whether an MPT event obligatorily leads to cytochrome c release in vivo. We have previously shown that treatment of human osteosarcoma cells with the protonophore m-chlorophenylhydrazone (CCCP) for 6 h induces MPT and mitochondrial swelling without significant cell death. Here we demonstrate that release of cytochrome c does not occur and the cells remain viable even after 72 h of treatment with CCCP. Bax is not mobilized to mitochondria under these conditions. However, subsequent exposure of CCCP-treated cells to etoposide or staurosporine for 48 h results in rapid cell death and cytochrome c release that is accompanied by Bax association with mitochondria, demonstrating competency of these mitochondria to release cytochrome c with additional triggers. Our findings suggest that MPT is not a sufficient condition, in itself, to effect cytochrome c release.  相似文献   

9.
Kim HJ  Kim SY  Kim J  Lee H  Choi M  Kim JK  Ahn JK 《IUBMB life》2008,60(7):473-480
Hepatitis B virus X protein (HBx) is essential for viral replication and plays an important role in viral pathogenesis. HBx transactivates many viral and cellular genes and participates in cellular signal transduction pathways, proliferation, and apoptosis. In the present study, we report that HBx induces apoptosis by enhancing the translocation of Bax to mitochondria, followed by inducing the loss of mitochondrial membrane potential and release of cytochrome C. In addition, Bcl-2, inhibitor of Bax, rescues the disruption of mitochondrial membrane potential and DNA fragmentation induced by serum starvation in HepG2-X cells expressing HBx. We also found that HBx binds directly to Bax and interferes with the interaction between Bax and 14-3-3epsilon to enhance the translocation of Bax to mitochondria. Taken together, our data suggest that HBx induces apoptosis by interacting with Bax and enhancing its translocation to mitochondria.  相似文献   

10.
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.  相似文献   

11.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

12.
Jurkat T-lymphocytes lack p53 and Bax but contain p73 and Bid and are killed by etoposide (ETO). With ETO c-abl is phosphorylated and phosphorylated p73 increased. Translocation of full-length Bid to mitochondria follows, with induction of the mitochondrial permeability transition (MPT) and release of cytochrome c into the cytosol. Pronounced swelling of mitochondria was evident ultrastructurally, and the MPT inhibitor cyclosporin A prevented the release of cytochrome c. Overexpression of Bcl-2 prevented the translocation of Bid, the release of cytochrome c, and cell death. The pan-caspase inhibitor ZVAD-FMK prevented the cell killing, but not the initial release of cytochrome c. An accumulation of tBid occurred at later times in association with Bid degradation. A sequence is proposed that couples DNA damage to Bid translocation via activation of c-abl and p73. Bid translocation induces the MPT, the event that causes release of cytochrome c, activation of caspases, and cell death.  相似文献   

13.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

14.
Enhanced formation of reactive oxygen species (ROS), superoxide (O2*-), and hydrogen peroxide (H2O2) may result in either apoptosis or other forms of cell death. Here, we studied the mechanisms underlying activation of the apoptotic machinery by ROS. Exposure of permeabilized HepG2 cells to O2*- elicited rapid and massive cytochrome c release (CCR), whereas H2O2 failed to induce any release. Both O2*- and H2O2 promoted activation of the mitochondrial permeability transition pore by Ca2+, but Ca2+-dependent pore opening was not required for O2*--induced CCR. Furthermore, O2*- alone evoked CCR without damage of the inner mitochondrial membrane barrier, as mitochondrial membrane potential was sustained in the presence of extramitochondrial ATP. Strikingly, pretreatment of the cells with drugs or an antibody, which block the voltage-dependent anion channel (VDAC), prevented O2*--induced CCR. Furthermore, VDAC-reconstituted liposomes permeated cytochrome c after O2*- exposure, and this release was prevented by VDAC blocker. The proapoptotic protein, Bak, was not detected in HepG2 cells and O2*--induced CCR did not depend on Bax translocation to mitochondria. O2*--induced CCR was followed by caspase activation and execution of apoptosis. Thus, O2*- triggers apoptosis via VDAC-dependent permeabilization of the mitochondrial outer membrane without apparent contribution of proapoptotic Bcl-2 family proteins.  相似文献   

15.
Proapoptotic members of the Bcl-2 protein family, including Bid and Bax, can activate apoptosis by directly interacting with mitochondria to cause cytochrome c translocation from the intermembrane space into the cytoplasm, thereby triggering Apaf-1-mediated caspase activation. Under some circumstances, when caspase activation is blocked, cells can recover from cytochrome c translocation; this suggests that apoptotic mitochondria may not always suffer catastrophic damage arising from the process of cytochrome c release. We now show that recombinant Bid and Bax cause complete cytochrome c loss from isolated mitochondria in vitro, but preserve the ultrastructure and protein import function of mitochondria, which depend on inner membrane polarization. We also demonstrate that, if caspases are inhibited, mitochondrial protein import function is retained in UV-irradiated or staurosporine-treated cells, despite the complete translocation of cytochrome c. Thus, Bid and Bax act only on the outer membrane, and lesions in the inner membrane occurring during apoptosis are shown to be secondary caspase-dependent events.  相似文献   

16.
The ability to selectively induce apoptosis in tumor cells is the prime goal in cancer immunotherapy and aims at identifying potential molecular targets, regulating this process. Here we show that the sera from the animals which had spontaneously rejected the AK-5 tumor (a rat histiocytoma) had an effective and potent ability to counteract and kill tumor cells by inducing apoptosis, with a high degree of specificity. Apoptosis induced by the serum factor involved the activation of caspases and cytochrome c release to the cytosol. A reduction in mitochondrial transmembrane potential (Delta psi(m)) occurred considerably later than cytochrome c translocation. The anti-apoptotic protein Bcl-2 and the pancaspase inhibitor zVAD-fmk did not prevent cytochrome c release, but completely blocked the reduction in Delta psi(m), DNA fragmentation and apoptosis. Cyclosporin A (CsA), an inhibitor of the mitochondrial permeability transition (MPT) pore had no effect on cytochrome c release and apoptosis mediated by serum factor in AK-5 cells, suggesting that apoptosis was independent of MPT. Taken together these results suggest that the serum factor in conjunction with the immune cells may be participating in the efficient rejection of the tumor in syngeneic hosts and Delta psi(m) disruption but not cytochrome c release, is a critical and decisive event to trigger apoptotic cell death induced by the serum factor in AK-5 tumor cells.  相似文献   

17.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

18.
Hyperoxia is known to induce extensive alveolar cell death by still poorly defined mechanisms. In this study, the mitochondria-dependent cell death pathway was explored during hyperoxia-induced lung injury in mice. We observed a progressive release of cytochrome c from the mitochondria into the cytosol of alveolar cells. This release was accompanied by the translocation of the proapoptotic protein Bax from cytosol to mitochondria without detectable activation of caspase-3. As cytochrome c release can be induced by mitochondrial membrane alteration and permeability transition (MPT), mice were treated with cyclosporin A, which specifically inhibits MPT. Cyclosporin A treatment prevented mitochondrial release of cytochrome c during hyperoxia and concomitantly preserved mitochondria from extensive swelling and crista disorganization, as assessed by electron microscopy analysis of alveolar epithelial cells. These morphological and biochemical observations correlated with decreased lung tissue damage, as evaluated by morphological score and lung weight. In conclusion, mitochondrial damage and cytochrome c release are important linked events in hyperoxia-induced lung injury and can be efficiently blocked by cyclosporin A.  相似文献   

19.
Liver cirrhosis is often preceded by overt signs of hepatitis, including parenchymal cell inflammation and infiltration of polymorphonuclear (PMN) leukocytes. Activated PMNs release both reactive oxygen species and reactive halogen species, including hypochlorous acid (HOCl), which are known to be significantly cytotoxic due to their oxidizing potential. Because the role of mitochondria in the hepatotoxicity attributed to HOCl has not been elucidated, we investigated the effects of HOCl on mitochondrial function in the human hepatoma HepG2 cell line, human fetal liver cells, and isolated rat liver mitochondria. We show here that HOCl induced mitochondrial dysfunction, and apoptosis was dependent on the induction of the mitochondrial permeability transition (MPT), because HOCl induced mitochondrial swelling and collapse of the mitochondrial membrane potential with the concomitant release of cytochrome c. These biochemical events were inhibited by the classical MPT inhibitor cyclosporin A (CSA). Cell death induced by HOCl exhibited several classical hallmarks of apoptosis, including annexin V labeling, caspase activation, chromatin condensation, and cell body shrinkage. The induction of apoptosis by HOCl was further supported by the finding that CSA and caspase inhibitors prevented cell death. For the first time, these results show that HOCl activates the MPT, which leads to the induction of apoptosis and provides a novel insight into the mechanisms of HOCl-mediated cell death at sites of chronic inflammation.  相似文献   

20.
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号