首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo microdialysis was used to study the effects of Ca2+, Mg2+, and K+ ion concentrations on basal extracellular (EC) levels of striatal DA and metabolites in awake rats on the second day (48 h) after implantation of a microdialysis probe. Basal EC striatal dopamine (DA) levels were markedly (90%) and reversibly reduced by removal and subsequent replacement of Ca2+ ions from the microdialysis perfusate. This implies that the EC DA in this preparation is primarily of synaptic origin. The addition and subsequent removal of 1.7 mM MgCl2 to the Mg2(+)-free perfusate produced a reversible decrease (20%) in basal EC DA levels. This decrease may reflect a competitive interaction between Ca2+ and Mg2+ in the process of vesicular release. Basal EC DA levels were also reduced (27%) by decreasing the K+ concentration of the perfusate from 4 mM to 3 mM. However, after restoring the K+ concentration to 4 mM, EC DA levels were slow to return to pretreatment levels. Basal EC 3,4-dihydroxyphenylacetic acid and homovanillic acid levels exhibited a parallel but diminished response to each manipulation of the ionic concentration of the perfusate. This study demonstrates that small variations in the concentrations of Ca2+, Mg2+, and K+ in the perfusate employed in microdialysis preparations will affect basal EC striatal DA and metabolite levels.  相似文献   

2.
Abstract: Carbon fiber microelectrodes either were implanted directly into striatal tissue or were mounted into the outlet of microdialysis probes that were implanted into striatal tissue. This allowed voltammetry and microdialysis to be used under identical in vivo experimental conditions to monitor extracellular dopamine levels during electrical stimulation of the medial forebrain bundle both before and after uptake inhibition with nomifensine. The marked differences between the results obtained with each technique cannot be explained on the basis of their inherent analytical attributes (sensitivity, temporal response, etc.). The results demonstrate that the microdialysis recovery factor for endogenous dopamine increases after uptake inhibition, an observation that stands in contradiction to the existing theory and practice of the microdialysis technique. The observations led to the development of a numerical model that rationalizes the observations reported herein and that allows in vivo voltammetry and in vivo microdialysis results to be interpreted within a single theoretical framework.  相似文献   

3.
While using the technique of in vivo microdialysis, we have assessed the effect of the ionic composition of the perfusing solution on extracellular dopamine levels during resting conditions and following a pharmacological manipulation. Our results indicate that perfusion with solutions containing the ionic composition of commercially available Ringer's solution, which mimic the ionic composition of plasma as opposed to brain extracellular fluid, alters the turnover rate and basal release of dopamine. Moreover, perfusion with solutions containing higher calcium levels, i.e., 3.4 mM, than the amount we have determined to be present in the extracellular fluid of striatum (1.2 mM) alters the pharmacological responsiveness of the nigrostriatal dopamine system to synthesis inhibition.  相似文献   

4.
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.  相似文献   

5.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

6.
Microvoltammetric electrodes implanted in the caudate nucleus of the anesthetized rat have been used to monitor dopamine released following electrical stimulation of the medial forebrain bundle. These electrodes are fabricated from unmodified carbon fibers and have been used with normal pulse voltammetry. Dopamine appears in the vicinity of the electrode when the stimulation is initiated, and disappears almost immediately when the stimulation is terminated. The data suggest that the effective diffusion distance is less than 100 micron. Postmortem analysis using liquid chromatography with electrochemical detection shows that dopamine released in this manner is metabolized to 3,4-dihydroxyphenylacetic acid (DOPAC); however, neither substance is observed electrochemically in the extracellular fluid within seconds after the stimulation. In addition, inhibitors of neuronal uptake of dopamine, amphetamine (1.8 or 15 mg X kg-1) or benztropine (25 mg X kg-1), or of dopamine metabolism, pargyline (150 mg X kg-1) or tropolone (100 mg X kg-1), do not significantly affect the rate at which dopamine disappears from extracellular fluid, although they can affect the amount released. These results suggest that dopamine cannot freely diffuse in the extracellular fluid because an extraneuronal uptake mechanism exists that clears dopamine from extracellular fluid into an extraneuronal pool where metabolism to 3,4-dihydroxyphenylacetic acid occurs. Dopamine can be observed during electrical stimulation of the ascending fibers because neuronal and extraneuronal uptake systems are unable to remove dopamine on these short time scales.  相似文献   

7.
Infusion of tetrodotoxin (TTX) through the dialysis membrane and perfusion with calcium-free Ringer solution (calcium depletion) were used to evaluate the dopamine release determined by in vivo brain dialysis. Several hours after implantation, the dopamine release recorded by the U-shaped cannula did not respond to calcium depletion and was only partly (approximately 50%) TTX dependent. The half-life of the TTX-independent dopamine overflow was determined to be 2 h. In contrast, when a transstriatal cannula was used, the dopamine output displayed calcium and TTX dependency. Differences in the dimensions of the two types of probes are a likely explanation for the observed effects. Twenty-four hours after implantation, both types of cannula fulfilled the criteria of calcium and TTX dependency. The results indicate that infusion of TTX-containing or calcium-free Ringer solution can be used to estimate the functional damage caused by the implantation of the cannula.  相似文献   

8.
Abstract: The basal and K+-induced release of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were measured in microdialysate samples obtained in vivo from the nucleus accumbens region of rats subchronically exposed to 50 ppm lead for 90 days. The basal and stimulus-induced release of dopamine and the metabolites were significantly reduced in the lead-exposed rats as compared with the controls. These reductions in dopamine and its metabolites are consistent with the reports of decreased dopamine availability associated with lead-induced changes in certain behavioral indices (fixed-interval performance) in rats. Furthermore, these changes were observed at blood lead levels similar to those considered to cause impairment in cognitive functions in children.  相似文献   

9.
Abstract: The aim of this study was to evaluate the influence of perfusion media with different glucose concentrations on dialysate levels of lactate, pyruvate, aspartate (Asp), and glutamate (Glu) under basal and hypoxic conditions in rat brain neocortex. Intracerebral microdialysis was performed with the rat under general anesthesia using bilateral probes (o.d. 0.3 mm; membrane length, 2 mm) perfused with artificial CSF containing 0.0 and 3.0 m M glucose, respectively. Basal dialysate levels were obtained 2 h after probe implantation in artificially ventilated animals. Dialysate levels of glucose were also measured for the two different perfusion fluids. The mean absolute extracellular concentration of glucose was estimated by a modification of the no-net-flux method to be 3.3 mmol/L, corresponding to an average in vivo recovery of 6% for glucose. Hypoxia was induced by lowering the inspired oxygen concentration to 3%. Hypoxia caused a disturbance of cortical electrical activity, evidenced by slower frequency and lower amplitudes on the electroencephalogram compared with prehypoxic conditions. This was associated with significant elevations of lactate, Asp, and Glu levels. There were no statistically significant differences in dialysate metabolite levels between the two perfusion fluids, during either normal or hypoxic conditions. We conclude that microdialysis with glucose-free perfusion fluid does not drain brain extracellular glucose in anesthetized rats to the extent that the dialysate lactate, pyruvate, Asp, and Glu levels during basal or hypoxic conditions are altered.  相似文献   

10.
Abstract: Intrastriatal microdialysis was used to administer muscarinic drugs in freely moving rats for 40 min at a flow rate of 2 µl/min. Administration of the nonselective agonist pilocarpine at 10 m M increased striatal dopamine release and decreased extracellular GABA and glutamate overflow. Perfusion with the muscarinic M2 antagonist methoctramine at 75 µ M increased extracellular dopamine and glutamate concentrations but exerted no changes on extracellular GABA levels. Intrastriatal administration of the M1 antagonist pirenzepine at 0.05 µ M decreased extracellular dopamine overflow. Application of pirenzepine (0.05 and 5 µ M ) exerted no effects on the measured GABA or glutamate levels. There are thus important differences in applied doses of muscarinic drugs needed to obtain modulatory effects. High doses of agonists are probably needed to superimpose on the background of tonic influences of striatal acetylcholine, whereas antagonists can block the receptors in small doses. We further suggest that M1 receptors might tonically facilitate striatal dopamine release, that M2 receptors might tonically inhibit striatal glutamate efflux, and that acetylcholine does not exert tonic effects on striatal GABA release. The link with the pilocarpine animal model for temporal lobe epilepsy will be discussed.  相似文献   

11.
Microvoltammetric electrodes were employed in the brain of an anesthetized rat to monitor chemical substances in extracellular fluid following electrical stimulation of the medial forebrain bundle. An increase in concentration of an easily oxidized substance is observed in the caudate nucleus and in the nucleus accumbens. A large amount of evidence suggests that the substance that is observed following stimulation is dopamine. (1) The location of the stimulating electrode must be in known dopaminergic tracts to induce release. (2) Release is most easily observed in brain regions that contain significant numbers of dopamine-containing neurons. (3) Two voltammetric electrodes with very different electrochemical responses provide voltammograms of the released species that are unique for catechols in one case and catecholamines in another case. (4) The amount of 3,4-dihydroxyphenylacetic acid found in striatal tissue by postmortem analysis correlates with the calculated amount of dopamine released. (5) Inhibition of tyrosine hydroxylase, and thus dopamine synthesis, decreases the observed release while inhibition of monoamine oxidase, and thus formation of dopamine metabolites, does not. (6) The dependence of release on stimulation parameters agrees with results obtained with perfusion techniques. Thus, a new method has been developed to characterize endogenous dopamine release in the rat brain and can be used on a time scale of seconds.  相似文献   

12.
Islet-activating protein was unilaterally microinjected into rat striatum, and a dialysis cannula was implanted into the same area under anesthesia. After 2 days, various agents were perfused continuously into the striatum through the dialysis membrane, under freely moving conditions. Islet-activating protein (2 micrograms/2 microliters) treatment alone did not change in vivo striatal dopamine (DA) release and metabolism, but completely abolished the increase of striatal DA release evoked in vivo by the M1-selective agonist McN-A-343 (10(-7) M). Forskolin (10(-5) M), an adenylate cyclase activator, increased DA release and showed an additive effect on the DA release evoked by McN-A-343. Polymyxin B, a rather selective inhibitor of protein kinase C, decreased DA release and completely blocked the effect of McN-A-343. These results suggest that in vivo striatal DA release elicited by M1 muscarinic receptors is coupled with interaction with a Go protein and is induced by activation of protein kinase C.  相似文献   

13.
The effects of sodium valproate (VPA; 100, 200, and 400 mg/kg, i.p.) on ventral hippocampal and anterior caudate putamen extracellular levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were examined using in vivo microdialysis. VPA induced dose-related increases in dialysate DA, 3,4-dihydroxyphenylacetic acid, and 5-HT in the ventral hippocampus. Anterior caudate putamen dialysate 5-HT was also dose dependently elevated by the drug, whereas DA levels tended to decrease with increasing VPA dose. In contrast, VPA (200, 400, and 800 mg/kg, i.p.) produced no significant elevation of DA in posterior caudate putamen dialysates, although 5-HT levels were significantly elevated at the 400- and 800-mg/kg doses. In all three regions studied, dialysate concentrations of 5-hydroxyindoleacetic acid and homovanillic acid remained at basal levels following VPA treatments. The results are discussed with regard to the possible anticonvulsant mode of action of VPA.  相似文献   

14.
Abstract: Voltammetric microelectrodes and microdialysis probes were used simultaneously to monitor extracellular dopamine in rat striatum during electrical stimulation of the medial forebrain bundle. Microelectrodes were placed far away (1 mm) from, immediately adjacent to, and at the outlet of microdialysis probes. In drug-naive rats, electrical stimulation (45 Hz, 25 s) evoked a robust response at microelectrodes far away from the probes, but there was no response at microelectrodes adjacent to and at the outlet of the probes. After nomifensine administration (20 mg/kg i.p.), stimulation evoked robust responses at all three microelectrode placements. These results demonstrate first that evoked release in tissue adjacent to microdialysis probes is suppressed in comparison with evoked release in tissue far away from the probes and second that equilibration of the dopamine concentration in the extracellular fluid adjacent to and far away from the probes is prevented by the high-affinity dopamine transporter. Hence, models of microdialysis, which assume the properties of tissue to be spatially uniform, require modification to account for the distance that separates viable sites of evoked dopamine release from the probe. We introduce new mass transfer resistance parameters that qualitatively explain the observed effects of uptake inhibition on stimulation responses recorded with microdialysis and voltammetry.  相似文献   

15.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

16.
We have demonstrated the usefulness of a novel hemoglobin-trapping technique to quantify nitric oxide (NO) concentrations in vivo. Concentric microdialysis probes were implanted into the hippocampus of rats under urethane anesthesia and perfused with 1 μM oxyhemoglobin in artificial CSF to sequester NO in extracellular fluid. The concentration of methemoglobin was then determined spectrophotometrically. The basal level of NO in hippocampus was 2.2 ± 0.5 nM(in vitro sensitivity of the probe was 0.2 nM). Administration of 13 mg/kg, i.p., of kainic acid (KA) produced a maximal 5.3-fold increase at 100 min in NO levels (11.8 ± 0.2 nM). This response was significantly attenuated by pretreatment with the NO synthase inhibitor N-monomethyl-L-arginine (50 mg/kg, 30 min before KA). These results demonstrate that a microdialysis probe using a novel hemoglobin-trapping technique possesses adequate sensitivity to determine the basal levels of NO and document the ability of KA to increase these levels via a NO synthase-mediated mechanism.  相似文献   

17.
An involvement of the mesolimbic dopamine (DA) system in mediating the motivational effects of opioids has been suggested. Accordingly, the present study employed the technique of in vivo microdialysis to examine the effects of selective mu-, delta-, and kappa- opioids on DA release in the nucleus accumbens (NAC) of anesthetized rats. Microdialysis probes were inserted into the NAC and perfusates were analyzed for DA and its metabolites, dihydroxyphenylacetic acid (DO-PAC) and homovanillic acid (HVA), using a reverse-phase HPLC system with electrochemical detection for separation and quantification. Intracerebroventricular (i.c.v.) administration of selective mu-opioid [D-Ala2, N-methyl-Phe4, Gly5-ol]-enkephalin (DAMGO) or delta-opioid [D-Pen2, D-Pen5]-enkephalin (DPDPE) agonists, at doses that function as positive reinforcers in rats, resulted in an immediate and significant increase in extracellular DA. DOPAC and HVA levels were also significantly increased. The effects of DAMGO were blocked by the selective mu-antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) whereas those of DPDPE were blocked by the delta-antagonist allyl2-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). In contrast to mu- and delta-agonists, the kappa-agonist N-CH3-Tyr-Gly-Gly-Phe-Leu-Arg-N-CH3-Arg-D-Leu-NHC2H5 (E-2078), a dynorphin analog that produces aversive states, decreased DA release in a biphasic manner. Norbinaltorphimine, a selective kappa-antagonist, could block this effect. These results demonstrate that mu-, delta-, and kappa-opioid agonists differentially affect DA release in the NAC and this action is centrally mediated.  相似文献   

18.
Theanine, r-glutamylethylamide, is one of the major components of amino acids in Japanese green tea. Effect of theanine on brain amino acids and monoamines, and the striatal release of dopamine (DA) was investigated. Determination of amino acids in the brain after the intragastric administration of theanine showed that theanine was incorporated into brain through blood-brain barrier via leucine-preferring transport system. The concentrations of norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole acetic acid (5HIAA) in the brain regions were unaffected by the theanine administration except in striatum. Theanine administration caused significant increases in serotonin and/or DA concentrations in the brain, especially in striatum, hypothalamus and hippocampus. Direct administration of theanine into brain striatum by microinjection caused a significant increase of DA release in a dose-dependent manner. Microdialysis of brain with calcium-free Ringer buffer attenuated the theanine-induced DA release. Pretreatment with the Ringer buffer containing an antagonist of non-NMDA (N-methyl-D-aspartate) glutamate receptor, MK-801, for 1 hr did not change the significant increase of DA release induced by theanine. However, in the case of pretreatment with AP-5, (±)-2-amino-5-phosphonopentanoic acid; antagonist of NMDA glutamate receptor, the theanine-induced DA release from striatum was significantly inhibited. These results suggest that theanine might affect the metabolism and/or the release of some neurotransmitters in the brain, such as DA.  相似文献   

19.
Nakajima  Wako  Ishida  Akira  Ogasawara  Maya  Takada  Goro 《Neurochemical research》1998,23(9):1159-1165
Effects of N-methyl-D-aspartate (NMDA) and potassium on 5-day-old rat's brain were examined. We measured extracellular striatal monoamines such as dopamine (DA), 3,4 dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) using intracerebral microdialysis. After 3 h stabilization, pups received varying concentrations of NMDA (1–3 mM) and potassium (200–800 mM) by intrastriatal perfusion for 32 minutes. Increasing the concentration of NMDA and potassium induced a dose related DA increase (p < 0.001), whereas DOPAC, HVA, and 5-HIAA decreased significantly. Five days later the same animals were sacrificed and the weight reduction of their cerebral hemispheres was measured. The weight of the drug perfused side was significantly reduced compared with that of the contralateral one. We examined next the relationship between the level of maximum DA and the relative hemisphere weight reduction. The DA peak was highly correlated with the hemisphere weight reduction (r = 0.70, n = 52, p < 0.001 in the NMDA group, r = 0.83, n = 30, p < 0.001 in the potassium group, respectively). These data show that each treatment alter striatal monoamine metabolism in immature rat brain and that the extracellular DA peak is a potential early indicator to estimate brain injury.  相似文献   

20.
Abstract: Numerical modeling was used as a means to examine the relationship between the outcome of in vivo voltammetry and microdialysis experiments and dopamine concentrations in the extracellular fluid of rat striatum. In the case of microdialysis, quantitative interpretation of results demands knowledge of the in vivo values for the extraction and recovery ratios of the probes toward dopamine. Equality of the extraction and recovery ratios is a necessary condition for the direct application of the no-net-flux method as a quantitative technique. Recent results have suggested that the extraction and recovery ratios are not equal, and this interpretation is now supported by theory. A new relationship between extraction and recovery is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号