首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three micronization techniques, based on the use of supercritical carbon dioxide, were investigated to produce microspheres of a natural biocompatible polysaccharide. Particles smaller than 20 mum were obtained by means of the rapid expansion of a supercritical solution method (RESS), both with and without cosolvents. The mean diameter of the particles was reduced to about 0.5 mum when a solution of the polymer in an organic solvent was expanded by using carbon dioxide as a supercritical antisolvent (SAS). The SAS process was operated both in a continuous and in a batch mode. The former leads to aggregated structures and fibers, and the latter to the formation of micronic spherical particles. It was found that the experimental temperature did not substantially affect the shape and dimension of the particles. A stronger dependence is shown with respect to the solute concentration in the starting solution. The proposed method is attractive as the basis of a new process for the preparation of drug delivery systems. (c) 1997 John Wiley & Sons, Inc.  相似文献   

2.
The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220–430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.KEY WORDS: ampicillin, nanoparticles, precipitation, supercritical gas antisolvent  相似文献   

3.
The protein lysozyme has been precipitated as amorphous nanoparticles from a DMSO solution using dense carbon dioxide as antisolvent, by applying the so-called gas antisolvent recrystallization technique in a 400-mL precipitator. The objective is to investigate the possibility of tuning the particle properties by changing the key process parameters, namely, antisolvent addition rate, initial solute concentration, and temperature. It is shown that none of these operating parameters has a major effect on the average particle size or the particle size distribution. The former is mostly between 200 and 300 nm and exhibits no evident trend. The latter is always unimodal and rather narrow and exhibits increasing agglomeration at higher temperature and initial solute concentration. Up to 75% of the protein activity measured in the starting crystalline material is retained by the precipitated amorphous nanoparticles. The present experimental results compare well with data about the same system obtained in a different experimental setup, which were previously reported in the literature, thus pointing at the reproducibility and robustness of GAS antisolvent recrystallization. Moreover, these are consistent with the theoretical understanding of gas antisolvent recrystallization as achieved by using a recently developed model of the process.  相似文献   

4.
Formation of inhalable microparticles containing rifampicin and poly(l-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 μm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.  相似文献   

5.
Artificial neural networks (ANNs) were used in this study to determine factors that control the polydispersity index (PDI) in an acetaminophen nanosuspension which was prepared using nanoprecipitation in microfluidic devices. The PDI of prepared formulations was measured by dynamic light scattering. Afterwards, the ANNs were applied to model the data. Four independent variables, namely, surfactant concentration, solvent temperature, and flow rate of solvent and antisolvent were considered as input variables, and the PDI of acetaminophen nanosuspension was taken as the output variable. The response surfaces, generated as 3D graphs after modeling, were used to survey the interactions happening between the input variables and the output variable. Comparison of the response surfaces indicated that the antisolvent flow rate and the solvent temperature have reverse effect on the PDI, whereas solvent flow rate has direct relation with PDI. Also, the effect of the concentration of the surfactant on the PDI was found to be indirect and less influential. Overall, it was found that minimum PDI may be obtained at high values of antisolvent flow rate and solvent temperature, while the solvent flow rate should be kept to a minimum.  相似文献   

6.
Nanofibrillar aerogels were prepared from cellulose, spruce wood and from mixtures of cellulose, lignin and xylan. The lignocellulosic polymers were first dissolved in an ionic liquid and coagulated from solution by adding aqueous ethanol. The obtained gel was washed with ethanol and liquid carbon dioxide and finally dried by releasing the carbon dioxide from the porous structure at supercritical temperature to obtain the aerogel. The bulk densities of the biopolymer aerogels ranged from 25 to 114 g/l and the internal surface areas (BET) from 108 to 539 m2/g depending on the biopolymer mix and on the polymer concentration in the ionic liquid solution. All aerogels were compressible and consisted of nanofibrillar biomaterial network with open-pore structure.  相似文献   

7.
《Chirality》2017,29(10):610-615
A novel, green possibility of the further purification of the diastereomeric salt of 4‐chloromandelic acid and 1‐phenylethane‐1‐amine was developed. Gas antisolvent method using supercritical carbon dioxide was applied for the first time to precipitate the diastereomeric salts with increased purity followed by the supercritical fluid extraction of the dissolved diastereomers. The RR ‐salt can be purified to >99%, while fractionation‐based purification of the SR ‐salt is limited to ~80%. The limiting initial diastereomeric excess correlates strongly with the atmospheric melting eutectic composition of the same salts, which suggests that despite the fast precipitation, the diastereomeric excess of the solid product is not kinetically determined. The efficiency of the diastereomeric enrichment is in the same range as that of the atmospheric reference experiments; however, technological advantages provided by the antisolvent precipitation method such as fast processing and dry product obtained suggest that this novel procedure is a promising alternative to the atmospheric methods.  相似文献   

8.
We investigated the spinning of hydroalcoholic chitosan solutions. The dope composition was optimized in order to obtain a continuous alcogel fiber by water evaporation on heating the extruded hydroalcoholic solution. This alcogel fiber was then neutralized in aqueous alkali baths and washed in water to eliminate the residual alcohol and salts before final drying. Depending on the alcohol content in the filament at the neutralization step, on specific alcohol–chitosan interactions and on the nature and concentration of the coagulation base, the process yielded semicrystalline chitosan fibers with different proportions of anhydrous and hydrated allomorphs. Contrarily to the classical annealing method, the formation of mainly anhydrous crystals was obtained without significant molecular weight decrease by neutralizing the polymer in hydrophobic conditions. The control of allomorph content was shown to be related to the hydrophobicity of the solvent (alcohol fraction) at the neutralization step.  相似文献   

9.
The architectural arrangement of the elastic-fiber network in the wall of canine hepatic portal veins was observed with the scanning electron microscope (SEM). Selective NaOH sonication digestion and autoclaving were used to expose and isolate the networks of elastic fibers from six selected regions of the hepatic portal vessels from seven healthy dogs. Elastic stains of adjacent segments prepared for light microscopy demonstrated that the elastic fibers were concentrated in two areas within the intact portal wall. The innermost area corresponded to the internal elastic lamina (IEL) of the tunica intima, the internal muscular layer, and the connective tissue layer of the tunica media. The second area was in the tunica adventitia. SEM specimens revealed two sleeves of elastic fiber networks which corresponded to the above regions. Small scattered bundles of radially oriented elastic fibers spanned the gap between the two sleeves. Each tunica had a different architectural arrangement of elastic fibers. The IEL had circumferentially oriented fibers which branched and anastomosed to form a continuous network on the innermost surface. The architecture of the IEL was the most variable between the different regions. The network of the IEL was the most "open" in the caudal region (splenic vein) and became "denser" toward the liver. The large elastic fibers in the tunica media were oriented at approximately right angles to the primary fibers of the IEL. These longitudinally oriented fibers anastomosed with adjacent longitudinal fibers to form a continuous network. In the tunica adventitia, thick, longitudinally oriented fibers of the continuous network fused together to form incomplete layers of fibers. The architecture of the elastic-fiber network in the canine hepatic portal vein was compared to that previously described in the systemic canine saphenous vein.  相似文献   

10.
Precipitation with a compressed or supercritical fluid antisolvent (PCA) has been used to produce microparticles of biologically active proteins, pharmaceuticals, and polymers. However, the application of PCA to a wider range of proteins is limited by the low mutual solubility of water (necessary to dissolve most proteins) and CO(2) (traditionally used as the compressed antisolvent). This investigation extends PCA to proteins in aqueous solutions by utilizing ethanol as a cosolvent to enhance the antisolvent properties of CO(2) toward aqueous systems. alpha-Chymotrypsin, a model protein, was precipitated from both compressed CO(2) and a liquid fluorinated antisolvent, a hydrofluoroether (HFE). The equilibrium phase behavior of the antisolvent/ethanol/water systems was examined to identify a one-phase region suitable for protein precipitation. Spherical protein microparticles with a primary particle size of approximately 0.2-0.6 microm were recovered using both the compressed CO(2) and fluorinated antisolvents. Although the proteins retained significant activity using both antisolvent systems, the HFE-precipitated chymotrypsin retained higher activity than the CO(2)-precipitated protein.  相似文献   

11.
Gas antisolvent (GAS) expansion of dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMFA) solutions with supercritical carbon dioxide was used to produce biologically active powders of insulin. Powders with 90% of the particles smaller than 4 mum and 10% smaller than 1 mum were obtained under all conditions tested when the process was operated continuously, with small liquid droplets sprayed into a flowing supercritical continuum. Slow pressurization of the stagnant protein solution resulted in larger particles. In vivo tests on rats revealed no differences between the biological activity of processed and unprocessed insulin, GAS processing of organic solution appears to be a reliable and effective method for the production of dry, biologically active microparticulate powders of peptides and proteins. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The surfaces of both stretched and unstretched silk threads from the cobweb weaver, Latrodectus hesperus (Black Widow) have been examined by atomic force microscopy (AFM). AFM images of cobweb scaffolding threads show both unordered and highly ordered regions. Two types of fibers within the threads were observed: thicker (approximately 300 nm in diameter) fibers oriented parallel to the thread axis and thinner (10-100 nm) fibrils oriented across the thread axis. While regions which lacked parallel fibers or fibrils were observed on threads at all strain values, the probability of observing fibers and/or fibrils increased with strain. High-resolution AFM images show that with increasing strain, both mean fiber and fibril diameters decrease and that fibrils align themselves more closely with the thread axis. The observation of fibers and fibrils within the cobweb threads has implications for current models of the secondary and tertiary structure and organization of spider silk.  相似文献   

13.
Byssal threads are tough collagenous fibers that mussels use to secure themselves against dislodgement by waves in the marine intertidal zone. Here, preCol, a family of hybrid collagens comprising up to 96% of the protein content in certain regions of byssal threads, was purified in mg amounts from mussel foot tissue for the first time. Conditions for drawing preCols into quality fibers ex vivo were investigated. The most important factor affecting fiber formation was the pH of the drawing solution. The morphology and tensile properties of drawn fibers were also characterized and suggest that a liquid crystal mesophase combined with cross-linking by His-metal coordination plays a role in the assembly/mechanics of drawn fibers and likely in native byssal threads as well.  相似文献   

14.
Threads of contractile proteins were formed via extrusion and their isometric tensions and isotonic contraction velocities were measured. We obtained reproducible data by using a new and sensitive tensiometer. The force-velocity curves of actomyosin threads were similar to those of muscle, with isometric tensions of the order of 10g/cm2 and maximum contraction velocites of the order of 10(-2) lengths/s. The data could be fitted by Hill's equation. Addition of tropomyosin and troponin to the threads increased isometric tension and maximum contraction velocity. Threads which contained troponin and tropomyosin required Ca++ for contraction and the dependence of their isometric tension on the level of free Ca++ was like that of muscle. The dependence of tension or of contraction velocity upon temperature or upon ionic strength is similar for actomyosin threads and muscle fibers. In contrast, the dependence of most parameters which are characteristic of the actomyosin interaction in solution (or suspension) upon these variables is not similar to the dependence of the muscle fiber parameters. The conclusion we have drawn from these results is that the mechanism of tension generation in the threads is similar to the mechanism that exists in muscle. Because the protein composition of the thread system can be manipulated readily and because the tensions and velocities of the threads can be related directly to the physiological parameters of muscle fibers, the threads provide a powerful method for studying contractile proteins.  相似文献   

15.
The treatment of isolated metaphase chromosomes with 5 mM Tris buffer caused their decondensation into DNP fibers 10 nm in diameter. The following increase in CaCl2 concentration induced the transition of nucleosomic DNP fibers into DNP fibers 20 nM and 40-50 nM in diameter, and the recovery of the whole chromosomes. However, in the similar conditions, the typical chromosomes (threads about 100 nm thick), chromomeres and G-bands were not reconstructed. According to these data, we assume that DNP threads 40-50 nm in diameter may be artificial (i.e. "pseudochromonemes"). The treatment of isolated chromosomes with 0.35 and 0.6 M NaCl prevents from formation of nucleomeric and pseudochromomeric fibers, although bodies of chromosomes can be recovered after the removal of HMG and H1 proteins. These observations point to a high stability of chromosomal fasteners providing the structural integrity of mitotic chromosomes.  相似文献   

16.
Forces between type I collagen triple helices are studied in solvents of varying hydrogen-bonding ability. The swelling of collagen fibers in reconstituted films is controlled by the concentration of soluble polymers that are excluded from the fibers and that compete osmotically with collagen for available solvent. The interaxial spacing between the triple helices as a function of the polymer concentration is measured by x-ray diffraction. Exponential-like changes in the spacing with increasing osmotic stress, qualitatively similar to the forces previously found in aqueous solution, are also seen in formamide and ethylene glycol. These are solvents that, like water, are capable of forming three-dimensional hydrogen-bond networks. In solvents that either cannot form a network or have a greatly impaired ability to form a hydrogen-bonded network, strikingly different behavior is observed. A hard-wall repulsion is seen with collagen solvated by ethanol, 2-propanol, and N,N-dimethylformamide. The spacing between helices hardly changes with increasing polymer concentration until the stress exceeds some threshold where removal of the solvent becomes energetically favorable. No solvation of collagen is observed in dimethoxyethane. In solvents with an intermediate ability to form hydrogen-bonded networks, methanol, 2-methoxyethanol, or N-methylformamide, the change in spacing with polymer concentration is intermediate between exponential-like and hard-wall. These results provide direct evidence that the exponential repulsion observed between collagen helices at 0-8-A surface separations in water is due to the energetic cost associated with perturbing the hydrogen-bonded network of solvent molecules between the collagen surfaces.  相似文献   

17.
为了提高牡荆苷溶出度,本实验采用反溶剂重结晶法(以N-甲基吡咯烷酮为溶剂,水为反溶剂)对牡荆苷原粉进行超细化研究。考察了药物浓度、溶剂与反溶剂体积比、搅拌转速及表面活性剂(PVP、Tween80、SDS)对牡荆苷微粉粒径的影响,确定牡荆苷微粉的最佳制备条件为:药液浓度为30 mg·mL-1,反溶剂与溶剂体积比为15∶1,搅拌转速为1 500 r·min-1,反溶剂中表面活性剂PVP浓度为8 mg·mL-1,上述条件下制备的牡荆苷微粉平均粒径为291.1 nm;采用扫描电镜(SEM)、X射线衍射(XRD)、差示扫描(DSC)、红外光谱(FTIR)对牡荆苷原粉与微粉进行了表征,与原粉相比牡荆苷微粉粒径变小,结晶度降低,其化学性质未发生改变,体外溶出度显著提高。  相似文献   

18.
19.
Characterization of flocculation for cell removal from fermentation broth via polyelectrolyte addition is commonly based on qualitative methods such as physical appearance of the floc. The use of zeta potential as a quantitative measure of floc character was evaluated as an indicator of optimal polymer addition. Zeta potential was found to increase with increasing cationic polyelectrolyte dosage, but never reached zero regardless of the total amount of polymer added, indicating flocculation occurs at least partially through a bridging type mechanism. Experiments were conducted using various polymer concentrations (25-75 g/L) and dosing methods (batch, incremental and continuous addition) that resulted in variable overall polymer requirements to achieve optimum flocculation. Zeta potential was found to be constant at optimal floc character regardless of the total amount of polymer added, polymer concentration, or method of polymer addition. Experiments with two additional types of fermentation broth also showed characteristic zeta potentials at optimal flocculation. Polymer requirements to achieve a particular floc character can vary greatly, depending on polymer dosing conditions and fermentation batch. The effect of polymer dosing conditions on the polymer requirement to obtain optimal floc character was evaluated. Polymer dosing method and calcium concentration were both found to have a significant effect (P < 0.0001) with continuous polymer addition and high calcium concentration requiring less polymer than did batch polymer addition and low calcium concentration, respectively. Polymer dosing concentration did not significantly affect polymer requirement for optimal flocculation.  相似文献   

20.
The performance of optimization algorithms, including those based on swarm intelligence, depends on the values assigned to their parameters. To obtain high performance, these parameters must be fine-tuned. Since many parameters can take real values or integer values from a large domain, it is often possible to treat the tuning problem as a continuous optimization problem. In this article, we study the performance of a number of prominent continuous optimization algorithms for parameter tuning using various case studies from the swarm intelligence literature. The continuous optimization algorithms that we study are enhanced to handle the stochastic nature of the tuning problem. In particular, we introduce a new post-selection mechanism that uses F-Race in the final phase of the tuning process to select the best among elite parameter configurations. We also examine the parameter space of the swarm intelligence algorithms that we consider in our study, and we show that by fine-tuning their parameters one can obtain substantial improvements over default configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号