首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mead was produced by immobilized cells of Hansenula anomala in calcium alginate gels. The immobilized cell beads of 3 mm diameter packed in column reactors of dimensions 2.2x60, 4x40 and 8x80 cm, produced mead containing maximum concentrations of ethanol and ethyl acetate of 70 g/l and 730 mg/l, respectively at a dilution rate of 0.1 h–1. The maximum alcohol productivity achieved was 23.1 g/l·h at a dilution rate of 0.33 h–1. With intermittent regenerations of the cells the reactor operated continuously for 110 days. This process enables the quick production of matured mead by a single culture and the elimination of the traditionally used long aging periods.  相似文献   

2.
Summary Lysine production by immobilizedCorynebacterium sp cells in alginate gel beads was investigated in flasks. ImmobilizedCorynebacterium sp cells exhibited a slightly greater lysine production than free cells and accumulated 60 g/l of L-lysine at maximum, when cultured for 120h in a medium containing 200g/l glucose as carbon source. Several factors, such as inoculum size, incubation time and alginate gel concentration were examined in order to improve lysine production by immobilized growing cells.  相似文献   

3.
Immobilized cells of Enterobacter agglomerans, able to reduce azo dyes enzymatically, were used as a biocatalyst for the decolorization of synthetic medium containing the toxic azo dye methyl red (MR). This bacterial strain exhibits high ability to completely decolorize 100 mg/L of MR after only 6 h of incubation under aerobic conditions. Cells of E. agglomerans were immobilized in calcium alginate, polyacylamide, cooper beech, and vermiculite, and were used for the decolorization of MR from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when E. agglomerans was entrapped in calcium alginate beads and was of about 3.04 mg MR/g cell/h with a 50% conversion time (t1/2) of about 1.6 h. Moreover, immobilized cells in calcium alginate continuously decolorized MR even after seven repeated experiments without significant loss of activity, while polyacrylamide-, cooper beech-, and vermiculite-immobilized cells retained only 62, 15, and 13% of their original activity, respectively.  相似文献   

4.
Continuous production of fructooligosaccharides (FOS) by Aureobasidium pullulans immobilized on calcium alginate beads with a packed bed was investigated at a plant scale reactor. Optimum conditions were with 770 g sucrose/l, being fed at 200 l/h at 50°C which gave a productivity of 180 g FOS/l h. Initial activity was maintained for more than 100 days. The reactor was successfully scaled up to a production scale of 1.2 m3.  相似文献   

5.
Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t 1/2 = 43 days at 70°C) in a continuous recycling mode at 70°C produced 49 and 38 g d-tagatose/l from 180 and 90 g d-galactose/l, respectively, within 12 h.  相似文献   

6.
Calcium alginate beads were used to entrap a Bacillus sp. that has the ability to biosorb cadmium. During the batch incubation of alginate beads in a `rich' or a `poor' liquid medium, cell release out of the beads was noticed with a lag phase which was inversely proportional to the inoculum size (2×107 or 2×108 cells ml–1 alginate), to the medium content, and proportional to the alginate concentration (10 or 15 g l–1) and to the cadmium concentration (1, 5 or 10 mg l–1). In addition, the cell release occurred more quickly when the medium was renewed. When the concentration was below 5 mg l–1, the alginate matrix seemed to protect the bacteria against Cd2+ toxicity.  相似文献   

7.
Summary The dissolution of alginate gel beads in 20 g sodium citrate /l produces a linear decrease in bead diameter. The rate of dissolution is dependent on the concentration of CaCl2 within the gel beads. This method allows the controlled release of Saccharomyces cerevisiae from alginate gel beads and permits the simple and rapid determination of the radial distribution of cell concentration.  相似文献   

8.
Thermostable α‐amylase was covalently bound to calcium alginate matrix to be used for starch hydrolysis at liquefaction temperature of 95°C. 1‐ethyl‐3‐(3‐dimethylamino‐propyl) carbodiimide hydrochloride (EDAC) was used as crosslinker. EDAC reacts with the carboxylate groups on the calcium alginate matrix and the amine groups of the enzyme. Ethylenediamine tetraacetic acid (EDTA) treatment was applied to increase the number of available carboxylate groups on the calcium alginate matrix for EDAC binding. After the immobilization was completed, the beads were treated with 0.1 M calcium chloride solution to reinstate the bead mechanical strength. Enzyme loading efficiency, activity, and reusability of the immobilized α‐amylase were investigated. Covalently bound thermostable α‐amylase to calcium alginate produced a total of 53 g of starch degradation/mg of bound protein after seven consecutive starch hydrolysis cycles of 10 min each at 95°C in a stirred batch reactor. The free and covalently bound α‐amylase had maximum activity at pH 5.5 and 6.0, respectively. The Michaelis‐Menten constant (Km) of the immobilized enzyme (0.98 mg/mL) was 2.5 times greater than that of the free enzyme (0.40 mg/mL). The maximum reaction rate (Vmax) of immobilized and free enzyme were determined to be 10.4‐mg starch degraded/mL min mg bound protein and 25.7‐mg starch degraded/mL min mg protein, respectively. The high cumulative activity and seven successive reuses obtained at liquefaction temperature make the covalently bound thermostable α‐amylase to calcium alginate matrix, a promising candidate for use in industrial starch hydrolysis process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

10.
Summary The flow behaviour of calcium alginate beads in an airlift reactor (ALR) with external loop was dependent on the airflow rate into and the amount of beads in the reactor. The performance of immobilizedArthrobacter simplex for the 1-dehydrogenation of hydrocortisone in the ALR compared favourably to that in a stirred tank reactor. The physical stability of the calcium alginate beads was significantly greater in the ALR.  相似文献   

11.
A new method for the immobilization of microbial cells has been developed. Whole cells of Escherichia coli with aspartase activity were immobilized by capture on the surface of cross-linked poly(N-benzyl-4-vinylpyridinium bromide) containing styrene (BVPS resin), an insoluble pyridinium-type resin. When a suspension of the bacterial cells in buffer solution was passed through a glass column containing beads of BVPS resin, the cells were captured on the resin surface and formed an immobilized cell system. A fixed-bed column reactor containing 300 mg of the bacterial cells immobilized by capture on 10 g of BVPS resin beads was used for the preparation of L-aspartic acid from ammonium fumarate. Continuous operation of tne bioreactor produced L-aspartic acid in a quantitative yield when the influent substrate concentration was 0.1M and the flow rate was 0.41-0.83 bed volumes per hour at pH 7.4-7.7 at 30 degrees C.  相似文献   

12.
Summary Calcium alginate beads containingLactococcus lactis cells were used for three batch fermentations of milk or a commercially available growth medium (Gold Complete, Nordica) with the aim of producing concentrated cultures. Repeated fermentations did not significantly increase bead CFU counts which were between 3.3–7.8×1010 CFU/g. During the second and third fermentations, which lasted 6 h each, the bead populations decreased if the incubation was extended over 2 h. There was cell release from the beads. Fermentation media and fermentation time all had an effect on free cell counts, but none of these factors statistically interacted. Free cell counts were higher at the end of fermentations 2 and 3 than in the first fermentation and approximately 50% of the population was in the free state. Free cell counts were higher when the beads were incubated in Gold complete than in milk. Although the total bacterial population of a standard free cell fermentation was always higher than those having immobilized cells, immobilized cell technology did enable the production of dense cultures.  相似文献   

13.
Citric acid was produced from glucose in repeated-batch shake-flask and continuous air-lift cultivations by calcium-alginate-immobilized Yarrowia lipolytica A-101 yeast. The medium composition was systematically studied in a batch system by using experimental design and empiric modelling. The highest citric acid product concentration of 39 g/l was reached with a medium containing 150 g/l of glucose, 0.105 g/l of potassium dihydrogen phosphate, 0.84 g/l of magnesium sulphate and 21 mg/l of copper sulphate (5.2 mg/l of copper). The results were further improved by hardening the alginate carrier beads with glutaraldehyde, and by activation of the immobilized biocatalyst in a nutrient solution. In continuous air-lift bioreactors with varying height-to-diameter ratio the highest productivity of 350 mg/l per hour with a dilution rate of 0.023 l/h and a citric acid product concentration of 12 g/l was reached with a ratio of 3. Correspondence to: H. Kautola  相似文献   

14.
Summary When alginate (1.0 g/l) was added to Wasabia japonica cell culture, cell growth was slightly inhibited (11–17%) but both the chitinase production and the specific chitinase productivity increased. Similar results were also observed when chitosan (1.0 g/l), which is well known as an elicitor, was added to the culture. These results suggest that alginate act as a kind of elicitor. Promotion effect of alginate on chitinase production was more remarkable when low molecular weight alginate (oligomer) was used. In comparison with free cells, addition of alginate to W. japonica protoplast culture resulted to 3 times increase in the chitinase productivity.  相似文献   

15.
Some aspects of the suitability of alginate beads entrapping Chlamydomonas reinhardtii cells for nitrate consumption from nitrate-containing waters were studied and discussed. Among 14 different metal cations tested as gel bead stabilizing agents, only calcium and barium formed beads showing nitrate-consuming activity. Pure calcium alginate cell entrapment resulted in the most suitable method for active cell immobilization compared to alginate-composite-gel beads based on poly-vinylcaprolactam (PVCL) and poly-vinylpyrrolidone (PVP). To perform a continuous nitrate consumption process, calcium alginate-entrapped cells were first grown in a 2.5 l airlift-loop reactor. A cell loading of about 150 microg Chl. g(-1) gel was achieved. Afterwards, five days nitrate consumption processes were performed and three different dilution rates were applied: (i) D < mu; (ii) D = mu; (iii) D > mu, where mu is the specific growth rate (h(-1)). The maximum consumption rates calculated for each dilution rate were: (i) 3.8, (ii) 6.4 and (iii) 7.2 mg nitrate mg(-1) Chl. h(-1). For low dilution rates (D < mu) some nitrite (< 300 microM) was excreted into the culture medium. However, this concentration of nitrite was not high enough to inhibit nitrate consumption.  相似文献   

16.
Summary Recycled immobilized cells of Kluyveromyces fragilis ATCC 28244 were used for repeated batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum ethanol concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry wt. immobilized cell/l bead volume. The maximum ethanol production rate was 13.5 g ethanol/l bioreactor volume/h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at 96% of the theoretical for all 11 batch runs, while the maximum ethanol production rate during the last batch run was found to be 70% of the original ethanol rate obtained in the first batch run.  相似文献   

17.
A convenient, rapid colorimetric assay system has been developed in order to determine cell viability of populations of mammalian cells encapsulated using a poly-L-lysine/ alginate encapsulation system. The method is based on the use of 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and involves direct incubation of the capsules with the reagent. This is followed by direct solubilization of the resulting formazan product in dimethyl sulfoxide (DMSO). In order to demonstrate that this assay method may be generally applicable to alginate-based carrier systems, viability of cells immobilized in alginate beads, as distinct from encapsulation in the poly-L-lysine/alginate system, was also determined using the in situ method.  相似文献   

18.
In this study, we developed a packed-bed immobilized cell reactor containing active β-gal (β-galactosidase) inclusion body (IB)-containing Escherichia coli (E. coli) cells in alginate beads. This packed-bed reactor was operated using a substrate feed solution 0.72 ∼ 38.4 mM ONPG (o-nitrophenyl-β-D-galactoside) prepared in Z buffer supplemented with chloroform and 0.1% SDS (sodium dodecyl sulfate). The production rate of ONP (o-nitrophenol) in the reactor containing cells that were incubated with α-MG (α-methyl D-glucospyranoside) or D-fucose after induction was superior to those prepared with cells that were not incubated with α-MG or D-fucose. The ONP production rate was increased proportionally with ONPG concentration in the substrate feed up to a concentration of 38.4 mM. However, as the ONPG concentration was increased in the substrate feed solution, galactose inhibition inside the alginate beads was increased. This most likely occurred due to problems with diffusion. In addition, partial breakage of alginate beads was observed during the later periods of operation. In this study, we demonstrated that active β-gal IB-containing E. coli cells were sustained in the immobilized cell reactor during operation. Particularly, these findings demonstrate the feasibility of using active IBs in an enzymatic reaction without the need for any purification step. In addition, we showed that these IB-containing cells could be directly used in an immobilized reactor.  相似文献   

19.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

20.
A cell surface display system with metalbinding properties was previously developed using CS3 fimbriae, which are hollow tubes 20 nm-thick and 2 nm in diameter. In this study, hybrid CS3 pili were separated from recombinant Escherichia coli and entrapped in calcium alginate gel beads in order to improve their stabilization and also adsorption of heavy metals. The surface morphology of the gel beads containing pili was investigated by scanning electron microscopy (SEM). Immunofluorescence microscopy was employed to confirm the attachment of nanobiofibers to the alginate beads. The effects of three variables (sodium alginate concentration, protein to alginate mass ratio, and bead size) at two levels each on Cd2+ biosorption efficiency were investigated by full factorial experimental design. A second-order polynomial equation modeled the design space for the process response of cadmium removal capacity. The optimal values of the factors were obtained as follows: 1% sodium alginate concentration, 0.25 protein to alginate mass ratio, and a 6 mm bead size. Under these conditions, Cd2+ was adsorbed at 45.45 mg/g to the nanobiofiber. The results indicate that the immobilized recombinant hybrid CS3 pili may be an appropriate biosorbent for removal of heavy metals from polluted aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号