首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network.  相似文献   

2.
Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an “open” conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the “folded back” conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.  相似文献   

3.
Microtubule (MT) plus end-tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end.  相似文献   

4.
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin–MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170–F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170–F-actin and CLIP-170–MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170–F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.  相似文献   

5.
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.  相似文献   

6.
Activation of macrophages causes increased cell spreading, increased secretion of cytokines and matrix metalloproteinases, and enhanced phagocytosis. The intracellular mechanisms driving the up-regulation of these activities have not been completely clarified. We observe that classical activation of murine resident peritoneal or RAW 264.7 macrophages with a combination of IFN-gamma and LPS induces an increase in stabilized cytoplasmic microtubules (MTs), measured with an anti-acetylated alpha-tubulin Ab. We examined the mechanism of this MT stabilization and find that macrophage activation causes redistribution of the MT plus-end tracking protein, cytoplasmic linker protein-170 (CLIP-170). CLIP-170 is localized at the distal plus-ends of MTs in resting macrophages, but accumulates along the length of MTs in IFN-gamma/LPS-activated cells. A direct involvement of CLIP-170 in MT stabilization has not been thoroughly established. In this study, we show that expression of a mutant CLIP-170 chimeric protein (dominant-negative CLIP-170-GFP), lacking the MT-binding domain, prevents MT stabilization in activated RAW 264.7 macrophages. Furthermore, we find enhanced CLIP-170 association with MTs and MT stabilization by treating resting macrophages with okadaic acid, implicating the protein phosphatase 2A in CLIP-170 binding and MT stabilization in RAW 264.7 cells. Finally, we observed enhanced cell spreading and phagocytosis in both IFN-gamma/LPS-activated and okadaic acid-treated resting RAW 264.7 cells, which are markedly reduced in activated cells expressing dominant-negative CLIP-170-GFP. These results identify CLIP-170 as a key regulator of MT stabilization and establish a prominent role for stabilized MTs in cell spreading and phagocytosis in activated macrophages.  相似文献   

7.
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.  相似文献   

8.
CLIP-170, the founding member of microtubule “plus ends tracking” proteins, is involved in many critical microtubule-related functions, including recruitment of dynactin to the microtubule plus ends and formation of kinetochore-microtubule attachments during metaphase. Although it has been reported that CLIP-170 is a phosphoprotein, neither have individual phosphorylation sites been identified nor have the associated kinases been extensively studied. Herein, we identify Cdc2 as a kinase that phosphorylates CLIP-170. We show that Cdc2 interacts with CLIP-170 mediating its phosphorylation on Thr287 in vivo. Significantly, expression of CLIP-170 with a threonine 287 to alanine substitution (T287A) results in its mislocalization, accumulation of Plk1 and cyclin B, and block of the G2/M transition. Finally, we found that depletion of CLIP-170 leads to centrosome reduplication and that Cdc2 phosphorylation of CLIP-170 is required for the process. These results demonstrate that Cdc2-mediated phosphorylation of CLIP-170 is essential for the normal function of this protein during cell cycle progression.Microtubule dynamics consist of alternating phases of growth and shortening, a pattern of behavior known as dynamic instability (1). This process is tightly regulated by a group of proteins that bind specifically to the plus ends of the growing microtubules (2). Cytoplasmic linker protein (CLIP)3 -170, the founding member of the microtubule plus end family (3), is composed of three separate regions: N terminus, central coiled-coil region, and C terminus. In addition to two conserved cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, the N terminus has three serine-rich regions. The N-terminal domain plays an essential role in microtubule targeting (4), the long central coiled-coil domain is responsible for dimerization of the protein, and the C-terminal region, which contains two zinc-finger domains interferes with microtubule binding by interacting with the N terminus (5). Experiments in a variety of organisms have demonstrated that CLIP-170 plays an important role in microtubule dynamics (6, 7). In addition to its positive role in regulating microtubule growth in both yeast and humans (8, 9), CLIP-170 is involved in recruitment of dynactin to the microtubule plus ends and in linking microtubules to the cortex through Cdc42 and IQGAP (10, 11). The role of CLIP-170 during mitosis was recently examined by loss-of-function approaches. It was shown that CLIP-170 localizes to unattached kinetochores in prometaphase and that such localization is essential for the formation of kinetochore-microtubule attachments (12, 13).It was previously reported that CLIP-170 is a phosphoprotein and that overall phosphorylation of CLIP-170 affects its microtubule binding ability (14). More recently, metabolic labeling experiments indicated that CLIP-170 is phosphorylated at multiple sites (15). However, individual phosphorylation sites have not been identified. Moreover, the FKBP12-rapamycin-associated protein (FRAP) is the only kinase identified to date for CLIP-170 (15). Therefore, to fully understand the regulation of CLIP-170, it is important to identify individual phosphorylation sites and the responsible kinases. In this communication, we describe a novel kinase/substrate partnership between Cdc2 and CLIP-170. We provide evidence that Cdc2 phosphorylates CLIP-170 at Thr287, and the Cdc2-mediated phosphorylation of CLIP-170 is essential for its localization at microtubule plus ends in the G2 phase and the G2/M transition.  相似文献   

9.
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150(Glued) and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH(2)-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH(2) and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips.  相似文献   

10.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

11.
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips.  相似文献   

12.
Proteins that track growing microtubule (MT) ends are important for many aspects of intracellular MT function, but the mechanism by which these +TIPs accumulate at MT ends has been the subject of a long-standing controversy. In this issue, Bieling et al. (Bieling, P., S. Kandels-Lewis, I.A. Telley, J. van Dijk, C. Janke, and T. Surrey. 2008. J. Cell Biol. 183:1223–1233) reconstitute plus end tracking of EB1 and CLIP-170 in vitro, which demonstrates that CLIP-170 plus end tracking is EB1-dependent and that both +TIPs rapidly exchange between a soluble and a plus end–associated pool. This strongly supports the hypothesis that plus end tracking depends on a biochemical property of growing MT ends, and that the characteristic +TIP comets result from the generation of new +TIP binding sites through MT polymerization in combination with the exponential decay of these binding sites.  相似文献   

13.
The ends of growing microtubules (MTs) accumulate a set of diverse factors known as MT plus end-tracking proteins (+TIPs), which control microtubule dynamics and organization. In this paper, we identify SLAIN2 as a key component of +TIP interaction networks. We showed that the C-terminal part of SLAIN2 bound to end-binding proteins (EBs), cytoplasmic linker proteins (CLIPs), and CLIP-associated proteins and characterized in detail the interaction of SLAIN2 with EB1 and CLIP-170. Furthermore, we found that the N-terminal part of SLAIN2 interacted with ch-TOG, the mammalian homologue of the MT polymerase XMAP215. Through its multiple interactions, SLAIN2 enhanced ch-TOG accumulation at MT plus ends and, as a consequence, strongly stimulated processive MT polymerization in interphase cells. Depletion or disruption of the SLAIN2-ch-TOG complex led to disorganization of the radial MT array. During mitosis, SLAIN2 became highly phosphorylated, and its interaction with EBs and ch-TOG was inhibited. Our study provides new insights into the molecular mechanisms underlying cell cycle-specific regulation of MT polymerization and the organization of the MT network.  相似文献   

14.
FAK is a non-receptor tyrosine kinase contributing to migration and proliferation downstream of integrin and/or growth factor receptor signaling of normal and malignant cells. In addition to well-characterized tyrosine phosphorylations, FAK is phosphorylated on several serines, whose role is not yet clarified. We observed that phosphorylated FAK on serine 732 (P-FAKSer732) is present at variable levels in vitro, in several melanoma, ovarian and thyroid tumor cell lines and in vivo, in tumor cells present in fresh ovarian cancer ascites. In vitro P-FAKSer732 was barely detectable during interphase while its levels strongly increased in mitotic cells upon activation of the EGFR/MEK/ERK axis in an integrin-independent manner. P-FAKSer732 presence was crucial for the maintenance of the proliferation rate and its levels were inversely related to the levels of acetylated α-tubulin. P-FAKSer732 localized at the microtubules (MTs) of the spindle, biochemically associated with MTs and contributed to MT depolymerization. The lack of the phosphorylation on Ser732 as well as the inhibition of CDK5 activity by roscovitine impaired mitotic spindle assembly and correct chromosome alignment during mitosis. We also identified, for the first time, that the EGF-dependent EGFR activation led to increased P-FAKSer732 and polymerized MTs. Our data shed light on the multifunctional roles of FAK in neoplastic cells, being involved not only in integrin-dependent migratory signaling but also in integrin-independent MT dynamics and mitosis control. These findings provide a new potential target for inhibiting the growth of tumor cells in which the EGFR/MEK/ERK/CDK5 pathway is active.  相似文献   

15.
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts.  相似文献   

16.
The remodeling capacity of microtubules (MT) is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.  相似文献   

17.
AMP‐activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP‐170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell–cell junction present between cardiomyocytes. A contractile inhibitor, MYK‐461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK‐461, suggesting that the localization of AMPK is regulated by mechanical stress. Time‐lapse imaging analysis revealed that the inhibition of CLIP‐170 Ser‐311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK‐461 increased the individual cell area of cardiomyocytes in CLIP‐170 phosphorylation‐dependent manner. Moreover, heart‐specific CLIP‐170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP‐170 at the intercalated disks.  相似文献   

18.
In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.  相似文献   

19.
Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes, which is noticeably different from that in vitro.  相似文献   

20.
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.Microtubules (MTs)1 in vertebrate somatic cells are involved in intracellular transport and distribution of membranous organelles. Fundamental to this role are their tightly controlled, polarized organization, and unusual dynamic properties (Hirokawa, 1994) and their interaction with a complex set of MT-based motor proteins (Hirokawa, 1996; Sheetz, 1996; Goodson et al., 1997). During mitosis, they contribute to the motility of centrosomes, the construction of spindle poles (Karsenti et al., 1996; Merdes and Cleveland, 1997), and the dynamic movements of kinetochores (Rieder and Salmon, 1994) and chromosome arms (Barton and Goldstein, 1996; Vernos and Karsenti, 1996). The motor protein cytoplasmic dynein, drives the transport toward MT minus-ends of a variety of subcellular organelles (Schnapp and Reese, 1989; Schroer et al., 1989; Holzbaur and Vallee, 1994). Dynactin is a molecular complex originally identified as being essential for dynein-mediated movement of salt-washed vesicles in vitro (reviewed in Schroer, 1996; Schroer and Sheetz, 1991). Genetic studies in fungi, yeast, and flies have shown that the two complexes function together to drive nuclear migration, spindle and nuclear positioning and to permit proper neuronal development (Eshel et al., 1993; Clark and Meyer, 1994; Muhua et al., 1994; Plamann et al., 1994; McGrail et al., 1995; Karsenti et al., 1996). Biochemical studies suggest a direct interaction between certain subunits of dynein and dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995). In vivo, the two molecules may bind one another transiently, since they have not been isolated as a stable complex.There is good evidence indicating that the dynein/dynactin complex, together with other motors (Eg5, and a minus-end oriented kinesin-related protein) and a structural protein (NuMa), drive the focusing of free microtubule ends into mitotic spindle poles (Merdes and Cleveland, 1997; Waters and Salmon, 1997). A trimolecular complex composed of NuMa and dynein/dynactin may be crucial in this process in both acentriolar (Merdes et al., 1996), and centriolar spindles (Gaglio et al., 1997). A number of findings also indicate that the combined actions of dynein and dynactin at the kinetochore contribute to chromosome alignment in vertebrate somatic cells. First, the initial interaction between polar spindle MTs and kinetochores seems to involve a tangential capture event (Merdes and De Mey, 1990; Rieder and Alexander, 1990) which is followed by a poleward gliding along the surface lattice of the MT (Hayden et al., 1990). Both in vivo and in vitro (Hyman and Mitchison, 1991) this gliding movement appears similar to the dynein-mediated retrograde transport of vesicular organelles along MTs. Consistent with this is the finding that both dynein (Pfarr et al., 1990; Steuer et al., 1990) and its activator, dynactin (Echeverri et al., 1996), are present at prometaphase kinetochores. Overexpression of dynamitin, a 50-kD subunit of the dynactin complex, results in the partial disruption of the dynactin complex and in the loss, from kinetochores, of dynein, as well as dynactin. Therefore, it has been proposed that dynactin mediates the association of dynein with kinetochores. Abnormal spindles with poorly focused poles are observed and the cells become arrested in pseudoprometaphase (Echeverri et al., 1996). Despite these findings, rigorous proof for a role of the dynein motor complex in kinetochore motility is still lacking, and its role may differ between lower and higher eucaryotes, and between mitosis and meiosis.CLIP-170 (Rickard and Kreis, 1996) is needed for in vitro binding of endocytic transport vesicles to MTs (Pierre et al., 1992). It is a nonmotor MT-binding protein that accumulates preferentially in the vicinity of MT plus ends and on early endosomes and endocytic transport vesicles in nondividing cells (Rickard and Kreis, 1990; Pierre et al., 1992). Like many MT-binding proteins, CLIP-170 is a homodimer whose NH2-terminal head domains and COOH-terminal tail domains flank a central α-helical coiled-coil domain. The binding of CLIP-170 to MTs involves a 57–amino acid sequence present twice in the head domain (Pierre et al., 1992) and is regulated by phosphorylation (Rickard and Kreis, 1991). The COOH-terminal domain has been proposed to participate in targeting to endocytic membranes (Pierre et al., 1994). The fact that the latter move predominantly toward microtubule minus ends in a process most likely mediated by cytoplasmic dynein and dynactin (Aniento and Gruenberg, 1995), suggests that CLIP-170 may act in concert with this motor complex, and may be subject to regulated interactions with one or more dynactin or dynein subunits at the vesicle membrane.Here we report that during mitosis, CLIP-170 codistributes with dynein and dynactin at kinetochores, but not spindle poles. Evidence is presented that the COOH-terminal domain of CLIP-170 is responsible for its kinetochore targeting, and that this may be mediated by the complex of dynein and dynactin. The effects on mitotic progression of overexpression of wild type and several deletion mutants of CLIP-170 provide evidence for the involvement of CLIP-170 in kinetochore function early in mitosis. We also present in vivo evidence that neither CLIP-170 nor the complex of dynein and dynactin are required for formation of kinetochore fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号