首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The zinc finger protein A20 is a tumor necrosis factor (TNF)- and interleukin 1 (IL-1)-inducible protein that negatively regulates nuclear factor-kappa B (NF-kappaB)-dependent gene expression. However, the molecular mechanism by which A20 exerts this effect is still unclear. We show that A20 does not inhibit TNF- induced nuclear translocation and DNA binding of NF-kappaB, although it completely prevents the TNF- induced activation of an NF-kappaB-dependent reporter gene, as well as TNF-induced IL-6 and granulocyte macrophage-colony stimulating factor gene expression. Moreover, NF-kappaB activation induced by overexpression of the TNF receptor-associated proteins TNF receptor-associated death domain protein (TRADD), receptor interacting protein (RIP), and TNF recep- tor-associated factor 2 (TRAF2) was also inhibited by expression of A20, whereas NF-kappaB activation induced by overexpression of NF-kappaB-inducing kinase (NIK) or the human T cell leukemia virus type 1 (HTLV-1) Tax was unaffected. These results demonstrate that A20 inhibits NF-kappaB-dependent gene expression by interfering with a novel TNF-induced and RIP- or TRAF2-mediated pathway that is different from the NIK-IkappaB kinase pathway and that is specifically involved in the transactivation of NF-kappaB. Via yeast two-hybrid screening, we found that A20 binds to a novel protein, ABIN, which mimics the NF-kappaB inhibiting effects of A20 upon overexpression, suggesting that the effect of A20 is mediated by its interaction with this NF-kappaB inhibiting protein, ABIN.  相似文献   

2.
3.
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.  相似文献   

4.
5.
Insulin-like growth factor I (IGF-I) plays an important role in cell survival, proliferation, and differentiation. Diverse kinases, including AKT/protein kinase B, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), can be activated by IGF-I. Here, we show that the receptor-interacting protein (RIP), a key mediator of tumor necrosis factor-induced NF-kappaB and JNK activation, plays a key role in IGF-I receptor signaling. IGF-I induced a robust JNK activation in wild type but not RIP null (RIP-/-) mouse embryonic fibroblast cells. Reconstitution of RIP expression in the RIP-/- cells restored the induction of JNK by IGF-I, suggesting that RIP is essential in IGF-I-induced JNK activation. Reconstitution experiments with different RIP mutants further revealed that the death domain and the kinase activity of RIP are not required for IGF-I-induced JNK activation. Interestingly, the AKT and ERK activation by IGF-I was normal in RIP-/- cells. The phosphatidylinositol 3-kinase inhibitor, wortmannin, did not affect IGF-I-induced JNK activation. These results agree with previous studies showing that the IGF-I-induced JNK activation pathway is distinct from that of ERK and AKT activation. Additionally, physical interaction of ectopically expressed RIP and IGF-IRbeta was detected by co-immunoprecipitation assays. More importantly, RIP was recruited to the IGF-I receptor complex during IGF-I-induced signaling. Furthermore, we found that IGF-I-induced cell proliferation was impaired in RIP-/- cells. Taken together, our results indicate that RIP, a key factor in tumor necrosis factor signaling, also plays a pivotal role in IGF-I-induced JNK activation and cell proliferation.  相似文献   

6.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation.  相似文献   

7.
8.
Receptor-interacting protein (RIP), a Ser/Thr kinase component of the tumor necrosis factor (TNF) receptor-1 signaling complex, mediates activation of the nuclear factor kappaB (NF-kappaB) pathway. RIP2 and RIP3 are related kinases that share extensive sequence homology with the kinase domain of RIP. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 possesses a unique C terminus. RIP3 binds RIP through this unique C-terminal segment to inhibit RIP- and TNF receptor-1-mediated NF-kappaB activation. We have identified a unique homotypic interaction motif at the C terminus of both RIP and RIP3 that is required for their association. Sixty-four amino acids within RIP3 and 88 residues within RIP are sufficient for interaction of the two proteins. This interaction is a prerequisite for RIP3-mediated phosphorylation of RIP and subsequent attenuation of TNF-induced NF-kappaB activation.  相似文献   

9.
A variety of surface receptors eliciting diverse cellular responses have been shown to recruit tumor necrosis factor receptor-associated factor (TRAF) adaptor molecules. However, a few TRAF-interacting intracellular proteins that serve as downstream targets or regulators of TRAF function have been identified. In search of new intracellular molecules that bind TRAF6, we carried out a yeast two-hybrid cDNA library screening with an N-terminal segment of TRAF6 as the bait. A novel human C(2)H(2)-type zinc finger family protein was identified, which when coexpressed with TRAF6 led to a suppression of TRAF6-induced activation of NF-kappa B and c-Jun N-terminal kinase. This novel protein was designated TIZ (for TRAF6-inhibitory zinc finger protein). TIZ expression also inhibited the signaling of RANK (receptor activator of NF-kappa B), which together with TRAF6 has been shown to be essential for osteoclastogenesis. Furthermore, the expression level of TIZ appeared to be regulated during the differentiation of human peripheral blood monocytes into osteoclasts. More significantly, transfection of TIZ into the monocyte/macrophage cell line Raw264.7 reduced the RANK ligand-induced osteoclastogenesis of this cell line. Our findings suggest that the novel zinc finger protein TIZ may play a role during osteoclast differentiation by modulating TRAF6 signaling activity.  相似文献   

10.
11.
12.
13.
RIP1 and its homologs, RIP2 and RIP3, form part of a family of Ser/Thr kinases that regulate signal transduction processes leading to NF-κB activation. Here, we identify RIP4 (DIK/PKK) as a novel member of the RIP kinase family. RIP4 contains an N-terminal RIP-like kinase domain and a C-terminal region characterized by the presence of 11 ankyrin repeats. Overexpression of RIP4 leads to activation of NF-κB and JNK. Kinase inactive RIP4 or a truncated version containing the ankyrin repeats have a dominant negative (DN) effect on NF-κB induction by multiple stimuli. RIP4 binds to several members of the TRAF protein family, and DN versions of TRAF1, TRAF3 and TRAF6 inhibit RIP4-induced NF-κB activation. Moreover, RIP4 is cleaved after Asp340 and Asp378 during Fas-induced apoptosis. These data suggest that RIP4 is involved in NF-κB and JNK signaling and that caspase-dependent processing of RIP4 may negatively regulate NF-κB-dependent pro-survival or pro-inflammatory signals.  相似文献   

14.
RIP3, a Ser/Thr kinase of RIP (Receptor Interacting Protein) family, is recruited to the TNFR1 signaling complex through RIP and has been shown to mediate apoptosis induction and NF-κB activation. RIP3 is a nucleocytoplasmic shuttling protein and its unconventional nuclear localization signal (NLS, 442-472 aa) is sufficient to trigger apoptosis in the nucleus. In this study, we demonstrate that this NLS exhibits several other roles besides apoptotic function. Firstly, this NLS was found to be required for both RIP3-induced apoptosis and RIP3-mediated NF-κB activation. Next, similar to RHIM motif (RIP homotypic interaction motif), NLS of RIP3 was found to be involved in RIP3-RIP interaction. Furthermore, this NLS was found to be both sufficient and necessary for RIP3 self-association. Our primary data also showed that RIP3 might form a homodimer within cells, and its apoptotic activity may not be required for this dimerization, rather the intactness of NLS determines RIP3-induced apoptosis, since a point mutation at amino acid residue 452 (Ile to Ala) within NLS greatly reduced its apoptotic ability, despite that RIP3 point mutant RIP3/I452A is able to dimerize with wild type RIP3 or itself.  相似文献   

15.
16.
17.
18.
CD95-induced apoptosis is an important regulatory mechanism in T cells and this complex signalling pathway is now thought to include the protein kinase RIP. Although, RIP is best known for its role in TNF signalling and NF-kappaB activation, it contains a death domain and it is capable of causing apoptosis upon cleavage. In the present study, the role of RIP in CD95-induced apoptosis and its inter-relationship with the caspase cascade was investigated. Studies were performed on both a RIP-/- T cell line and peripheral T lymphocytes, where RIP was degraded through the addition of geldanamycin. Apoptosis was induced by membrane CD95-L, thought to be the most physiological relevant form of CD95-L. Results showed that RIP-/- cells had a decreased susceptibility to death, thus confirming a role for RIP in CD95-induced apoptosis. Furthermore, it was confirmed that RIP is cleaved upon CD95-L stimulation, a process that can be inhibited by Z-VAD. However, only partial inhibition in peripheral T lymphocytes by Z-VAD was observed, suggesting a potential caspase-independent processing of RIP. Studies performed on the activity of effector caspase 3 and on the initiator caspases 2, 8, and 9 revealed that, in the absence of RIP, the activity of these caspases decreases, indicating that RIP-associated apoptosis is caspase-dependent. Hence, these studies support a caspase-related role for RIP in CD95-induced T apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号