首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane vesicles (OMVs) are nanoscale spherical vesicles released from Gram-negative bacteria. The lipid bilayer membrane structure of OMVs consists of similar components as bacterial membrane and thus has attracted more and more attention in exploiting OMVs' bio-applications. Although the endotoxic lipopolysaccharide on natural OMVs may impose potential limits on their clinical applications, genetic modification can reduce their endotoxicity and decorate OMVs with multiple functional proteins. These genetically engineered OMVs have been employed in various fields including vaccination, drug delivery, cancer therapy, bioimaging, biosensing, and enzyme carrier. This review will first briefly introduce the background of OMVs followed by recent advances in functionalization and various applications of engineered OMVs with an emphasis on the working principles and their performance, and then discuss about the future trends of OMVs in biomedical applications.  相似文献   

2.
In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles.  相似文献   

3.
Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases.  相似文献   

4.
Park SB  Jang HB  Nho SW  Cha IS  Hikima J  Ohtani M  Aoki T  Jung TS 《PloS one》2011,6(3):e17629
Infection with Edwardsiella tarda, a gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis.  相似文献   

5.
The alpha-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the alpha-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The alpha-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The alpha-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the alpha-haemolysin were distinct from the OMVs not containing alpha-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of alpha-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted alpha-haemolysin from the bacteria to the host cells during bacterial infections.  相似文献   

6.
Cyanobacteria were the first organisms ever to perform oxygenic photosynthesis and still significantly contribute to primary production on a global scale. To assure the proper functioning of their primary metabolism and cell homeostasis, cyanobacteria must rely on efficient transport systems to cross their multilayered cell envelope. However, cyanobacterial secretion mechanisms remain largely unknown. Here, we report on the identification of 11 putative inner membrane translocase components of TolC‐mediated secretion in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Gene‐inactivation of each of the candidate genes followed by a comprehensive phenotypic characterization allowed to link specific protein components to the processes of protein export (as part of the type I secretion system) and drug efflux (part of the resistance‐division‐nodulation efflux pumps). In addition, mutants in genes sll0141, sll0180 and slr0369 exhibited alterations in pilin glycosylation, but pili structures could still be observed by transmission electron microscopy. By studying the release of outer membrane vesicles (OMVs), an alternative secretion route, on mutants with impaired secretory functions we suggest that the hyper‐vesiculating phenotype of the TolC‐deficient mutant is related to cell envelope stress management. Altogether, these findings highlight how both classical (TolC‐mediated) and nonclassical (OMVs‐mediated) secretion systems are crucial for cyanobacterial cell homeostasis.  相似文献   

7.
8.
易洁  刘青  孔庆科 《微生物学报》2016,56(6):911-921
外膜囊泡(OMVs,Outer membrane vesicles)是一种在革兰氏阴性菌甚至某些革兰氏阳性菌中普遍存在的包含生物学活性物质的囊泡状结构,其大小在20–250 nm之间。其组成成分包括脂多糖、外膜蛋白、磷脂、DNA以及在形成过程中被外膜包裹的周质成分等。由于外膜囊泡不能复制且含有大量的细菌抗原,并能有效激活免疫系统,所以被认为是极具潜力的疫苗候选。虽然外膜囊泡从发现至今有50多年的历史,但针对其作为疫苗的潜力探究最近几年才开始,中国关于这方面的文献报道还很少。本文从外膜囊泡诱导免疫应答的机制以及其作为疫苗的研究进展两个方面概述了外膜囊泡可以作为一种新颖的防控疾病的疫苗策略,为今后外膜囊泡疫苗的深入研究提供参考。  相似文献   

9.
Outer membrane vesicles (OMVs) have been identified in a wide range of bacteria, yet little is known of their biogenesis. It has been proposed that OMVs can act as long-range toxin delivery vectors and as a novel stress response. We have found that the formation of OMVs in the gram-negative opportunistic pathogen Serratia marcescens is thermoregulated, with a significant amount of OMVs produced at 22 or 30°C and negligible quantities formed at 37°C under laboratory conditions. Inactivation of the synthesis of the enterobacterial common antigen (ECA) resulted in a hypervesiculation phenotype, supporting the hypothesis that OMVs are produced in response to stress. We demonstrate that the phenotype can be reversed to wild-type (WT) levels upon the loss of the Rcs phosphorelay response regulator RcsB, but not RcsA, suggesting a role for the Rcs phosphorelay in the production of OMVs. MS fingerprinting of the OMVs provided evidence of cargo selection within wild-type cells, suggesting a possible role for Serratia OMVs in toxin delivery. In addition, OMV-associated cargo proved toxic upon injection into the haemocoel of Galleria mellonella larvae. These experiments demonstrate that OMVs are the result of a regulated process in Serratia and suggest that OMVs could play a role in virulence.  相似文献   

10.
The sialyltransferase and galactosyltransferase activities of the Golgi-rich fraction from rat liver were enhanced by the binding of wheat germ agglutinin (WGA). The sialytransferase was more sensitive than the galactosyltransferase to the WGA. Maximal stimulation of the galactosyltransferase activity resulted from the binding of 60--80 micrograms WGA to the Golgi membrane, while only 40 micrograms of WGA produced a maximal enhancement in the sialyltransferase activity. Within 5 min of WGA binding, the Golgi sialytransferase activity was doubled. After the initial binding of WGA to the Golgi fraction, the galactosyltransferase activity was decreased by 30%. However, in 15 min the activity was doubled by the binding of WGA. The activities of both enzymes were further enhanced by incubation for up to 90 min. The stimulation of both sialyltransferase and galactosyltransferase activities by WGA was reversed by N-acetyl-D-glucosamine (GlcNAc), the specific inhibitor of agglutination by WGA. Complete reversal of the enhanced activity was observed after 20--30 min in the presence of 1 micromol GlcNAc. The association constant for the binding of WGA to the Golgi membranes was calculated to be 4.16 X 10(-6) M from a Steck-Wallach plot. The 'n' value or mean binding sites was calculated as 5.26 X 10(-5) M/mg of Golgi membrane protein.  相似文献   

11.
细菌外膜囊泡(outer membrane vesicles,OMVs)是由革兰氏阴性菌分泌的纳米囊泡,主要由细菌外膜和周质成分组成,因此表面富集的病原体相关分子模式(PAMPs)使OMVs能激起强烈的免疫反应。在抗肿瘤研究中,OMVs主要被用于抗肿瘤药物的递送,不仅能增加药物的肿瘤富集还能激活免疫反应协同杀伤肿瘤;同时,OMVs也用于开发肿瘤疫苗的佐剂,可显著提高免疫响应的能力。本综述主要概括了OMVs的生物发生机理、OMVs对宿主免疫系统的影响及其在肿瘤治疗中的研究进展。  相似文献   

12.
Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food‐borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL‐37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL‐37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT‐loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL‐37‐resistance. Furthermore, a sublethal dosage of LL‐37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT‐positive strains protect the OmpT‐negative strain, which is susceptible to LL‐37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT‐loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL‐37.  相似文献   

13.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   

14.
Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram‐negative bacteria. Campylobacter jejuni produces OMVs that trigger IL‐8, IL‐6, hBD‐3 and TNF‐α responses from T84 intestinal epithelial cells and are cytotoxic to Caco‐2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E‐cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co‐incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E‐cadherin and occludin. The addition of 11168H OMVs to the co‐culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time‐dependent and dose‐dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells.  相似文献   

15.
Jin JS  Kwon SO  Moon DC  Gurung M  Lee JH  Kim SI  Lee JC 《PloS one》2011,6(2):e17027
Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients, but pathogenic mechanisms of this microorganism regarding the secretion and delivery of virulence factors to host cells have not been characterized. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs) that play a role in the delivery of virulence factors to host cells. A. baumannii has been shown to secrete OMVs when cultured in vitro, but the role of OMVs in A. baumannii pathogenesis is not well elucidated. In the present study, we evaluated the secretion and delivery of virulence factors of A. baumannii to host cells via the OMVs and assessed the cytotoxic activity of outer membrane protein A (AbOmpA) packaged in the OMVs. A. baumannii ATCC 19606(T) secreted OMVs during in vivo infection as well as in vitro cultures. Potential virulence factors, including AbOmpA and tissue-degrading enzymes, were associated with A. baumannii OMVs. A. baumannii OMVs interacted with lipid rafts in the plasma membranes and then delivered virulence factors to host cells. The OMVs from A. baumannii ATCC 19606(T) induced apoptosis of host cells, whereas this effect was not detected in the OMVs from the ΔompA mutant, thereby reflecting AbOmpA-dependent host cell death. The N-terminal region of AbOmpA(22-170) was responsible for host cell death. In conclusion, the OMV-mediated delivery of virulence factors to host cells may well contribute to pathogenesis during A. baumannii infection.  相似文献   

16.
Robust biofilm formation by Vibrio fischeri depends upon activation of the symbiosis polysaccharide (syp) locus, which is achieved by overexpressing the RscS sensor kinase (RscS(+)). Other than the Syp polysaccharide, however, little is known about V. fischeri biofilm matrix components. In other bacteria, biofilms contain polysaccharides, secreted proteins, and outer membrane vesicles (OMVs). Here, we asked whether OMVs are part of V. fischeri biofilms. Transmission electron microscopy revealed OMV-like particles between cells within colonies. In addition, OMVs could be purified from culture supernatants of both RscS(+) and control cells, with the former releasing 2- to 3-fold more OMVs. The increase depended upon the presence of an intact syp locus, as an RscS(+) strain deleted for sypK, which encodes a putative oligosaccharide translocase, exhibited reduced production of OMVs; it also showed a severe defect in biofilm formation. Western immunoblot analyses revealed that the RscS(+) strain, but not the control strain or the RscS(+) sypK mutant, produced a distinct set of nonproteinaceous molecules that could be detected in whole-cell extracts, OMV preparations, and lipopolysaccharide (LPS) extracts. Finally, deletion of degP, which in other bacteria influences OMV production, decreased OMV production and reduced the ability of the cells to form biofilms. We conclude that overexpression of RscS induces OMV production in a manner that depends on the presence of the syp locus and that OMVs produced under these conditions contain antigenically distinct molecules, possibly representing a modified form of lipopolysaccharide (LPS). Finally, our data indicate a correlation between OMV production and biofilm formation by V. fischeri.  相似文献   

17.
Gram-negative bacteria produce outer membrane vesicles (OMVs) and contain bacterial cargo including nucleic acids and proteins. The proteome of OMVs can be altered by various factors including bacterial growth stage, growth conditions, and environmental factors. However, it is currently unknown if the mechanism of OMV biogenesis can determine their proteome. In this study, we examined whether the mechanisms of OMV biogenesis influenced the production and protein composition of Pseudomonas aeruginosa OMVs. OMVs were isolated from three P. aeruginosa strains that produced OMVs either by budding alone, by explosive cell lysis, or by both budding and explosive cell lysis. We identified that the mechanism of OMV biogenesis dictated OMV quantity. Furthermore, a global proteomic analysis comparing the proteome of OMVs to their parent bacteria showed significant differences in the identification of proteins in bacteria and OMVs. Finally, we determined that the mechanism of OMV biogenesis influenced the protein composition of OMVs, as OMVs released by distinct mechanisms of biogenesis differed significantly from one another in their proteome and functional enrichment analysis. Overall, our findings reveal that the mechanism of OMV biogenesis is a main factor that determines the OMV proteome which may affect their subsequent biological functions.  相似文献   

18.
The systematic organization of enzymes is a key feature for the efficient operation of cascade reactions in nature. Here, we demonstrate a facile method to create nanoscale enzyme cascades by using engineered bacterial outer membrane vesicles (OMVs) that are spheroid nanoparticles (roughly 50 nm in diameter) produced by Gram-negative bacteria during all phases of growth. By taking advantage of the fact that OMVs naturally contain proteins found in the outer cell membrane, we displayed a trivalent protein scaffold containing three divergent cohesin domains for the position-specific presentation of a three-enzyme cascade on OMVs through a truncated ice nucleation protein anchoring motif (INP). The positional assembly of three enzymes for cellulose hydrolysis was demonstrated. The enzyme-decorated OMVs provided synergistic cellulose hydrolysis resulting in 23-fold enhancement in glucose production than free enzymes.  相似文献   

19.
Outer membrane vesicles (OMVs) are composed of outer membrane and periplasmic components and are ubiquitously secreted by Gram-negative bacteria. OMVs can disseminate virulence factors for pathogenic bacteria as well as serve as an envelope stress response. From a transposon mutant screen for OMV phenotypes, it was discovered that an nlpA mutant of Escherichia coli produces fewer OMVs than the wild type, whereas a degP mutant produces higher levels of OMVs. NlpA is an inner-membrane-anchored lipoprotein that has a minor role in methionine import. DegP is a periplasmic chaperone/protease for misfolded envelope proteins that is critical when cells are heat shocked. To reveal how these proteins contribute to OMV production, the mutations were combined and the double mutant analyzed. The ΔnlpA ΔdegP strain displayed a high-temperature growth defect that corresponded to the production of fewer OMVs than produced by the ΔdegP strain. This phenotype also pertained to other undervesiculation mutations in a ΔdegP background. The hypovesiculation phenotype of ΔnlpA in the wild-type strain as well as in the degP deletion strain was found to be a stationary-phase phenomenon. The periplasm of the ΔnlpA ΔdegP strain was determined to contain significantly more protein in stationary phase than the wild type. Additionally, misfolded DegP substrate outer membrane porins were detected in ΔdegP mutant-derived OMVs. These data suggest that an accumulation of envelope proteins resulting from decreased vesiculation was toxic and contributed to the growth defect. We conclude that OMV production contributes to relieve the envelope of accumulated toxic proteins and that NlpA plays an important role in the production of vesicles in stationary phase.  相似文献   

20.
Escherichia coli, as one of the gut microbiota, can evoke severe inflammatory diseases including peritonitis and sepsis. Gram-negative bacteria including E. coli constitutively release nano-sized outer membrane vesicles (OMVs). Although E. coli OMVs can induce the inflammatory responses without live bacteria, the effect of E. coli OMVs in vivo on endothelial cell function has not been previously elucidated. In this study, we show that bacteria-free OMVs increased the expression of endothelial intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1, and enhanced the leukocyte binding on human microvascular endothelial cells in vitro. Inhibition of NF-κB and TLR4 reduced the expression of cell adhesion molecules in vitro. OMVs given intraperitoneally to the mice induced ICAM-1 expression and neutrophil sequestration in the lung endothelium, and the effects were reduced in ICAM-1-/- and TLR4-/- mice. When compared to free lipopolysaccharide, OMVs were more potent in inducing both ICAM-1 expression as well as leukocyte adhesion in vitro, and ICAM-1 expression and neutrophil sequestration in the lungs in vivo. This study shows that OMVs potently up-regulate functional cell adhesion molecules via NF-κB- and TLR4-dependent pathways, and that OMVs are more potent than free lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号