首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several strains that grow on medium-chain-length alkanes and catalyze interesting hydroxylation and epoxidation reactions do not possess integral membrane nonheme iron alkane hydroxylases. Using PCR, we show that most of these strains possess enzymes related to CYP153A1 and CYP153A6, cytochrome P450 enzymes that were characterized as alkane hydroxylases. A vector for the polycistronic coexpression of individual CYP153 genes with a ferredoxin gene and a ferredoxin reductase gene was constructed. Seven of the 11 CYP153 genes tested allowed Pseudomonas putida GPo12 recombinants to grow well on alkanes, providing evidence that the newly cloned P450s are indeed alkane hydroxylases.  相似文献   

2.
3.
TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Recently, TEM beta-lactamase variants with amino acid substitutions in the active-site pocket of the enzyme have been identified in natural isolates with increased resistance to extended-spectrum cephalosporins. To identify other amino acid substitutions that alter the activity of TEM-1 towards extended-spectrum cephalosporins, we probed regions around the active-site pocket by random-replacement mutagenesis. This mutagenesis technique involves randomizing the DNA sequence of three to six codons in the blaTEM-1 gene to form a library containing all or nearly all of the possible substitutions for the region randomized. In total, 20 different residue positions that had been randomized were screened for amino acid substitutions that increased enzyme activity towards the extended-spectrum cephalosporin cefotaxime. Substitutions at positions 104, 168, and 238 in the TEM-1 beta-lactamase that resulted in increased enzyme activity towards extended-spectrum cephalosporins were found. In addition, small deletions in the loop containing residues 166 to 170 drastically altered the substrate specificity of the enzyme by increasing activity towards extended-spectrum cephalosporins while virtually eliminating activity towards ampicillin.  相似文献   

4.
PH8 monoclonal antibody has previously been shown to react with all three aromatic amino acid hydroxylases, being particularly useful for immunohistochemical staining of brain tissue [Haan, Jennings, Cuello, Nakata, Chow, Kushinsky, Brittingham & Cotton (1987) Brain Res. 426, 19-27]. Western-blot analysis of liver extracts showed that PH8 reacted with phenylalanine hydroxylase from a wide range of vertebrate species. The epitope for antibody PH8 has been localized to the human phenylalanine hydroxylase sequence between amino acid residues 139 and 155. This highly conserved region of the aromatic amino acid hydroxylases has 11 out of 17 amino acids identical in phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase.  相似文献   

5.
Recombinant cDNA clones representing the fusion (F) and hemagglutinin-neuraminidase (HN) proteins of two mumps virus strains different in fusogenicity were constructed. Upon transfection of COS7 cells, extensive cell fusion was observed only when cells expressed the F protein of the fusing strain together with the HN protein derived from either strain. Mutational analyses further showed that the amino acid at position 195 of the F protein plays a critical role in determining the extent of cell fusion induced by mumps virus, since replacement of Ser-195 by Tyr significantly reduced the fusion inducibility of otherwise fusion-competent F protein.  相似文献   

6.
Shanklin J  Whittle E 《FEBS letters》2003,545(2-3):188-192
Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site.  相似文献   

7.
Nitrilase from Rhodococcus rhodochrous ATCC 33278 hydrolyses both aliphatic and aromatic nitriles. Replacing Tyr-142 in the wild-type enzyme with the aromatic amino acid phenylalanine did not alter specificity for either substrate. However, the mutants containing non-polar aliphatic amino acids (alanine, valine and leucine) at position 142 were specific only for aromatic substrates such as benzonitrile, m-tolunitrile and 2-cyanopyridine, and not for aliphatic substrates. These results suggest that the hydrolysis of substrates probably involves the conjugated pi-electron system of the aromatic ring of substrate or Tyr-142 as an electron acceptor. Moreover, the mutants containing charged amino acids such as aspartate, glutamate, arginine and asparagine at position 142 displayed no activity towards any nitrile, possibly owing to the disruption of hydrophobic interactions with substrates. Thus aromaticity of substrate or amino acid at position 142 in R. rhodochrous nitrilase is required for enzyme activity.  相似文献   

8.
We identified an amino acid transporter that is associated with the cystinuria-related type II membrane glycoprotein, rBAT (related to b(0,+) amino acid transporter). The transporter designated BAT1 (b(0, +)-type amino acid transporter 1) from rat kidney was found to be structurally related to recently identified amino acid transporters for system L, system y(+)L, and system x(-)C, which are linked, via a disulfide bond, to the other type II membrane glycoprotein, 4F2hc (4F2 heavy chain). In the nonreducing condition, a 125-kDa band, which seems to correspond to the heterodimeric complex of BAT1 and rBAT, was detected in rat kidney with anti-BAT1 antibody. The band was shifted to 41 kDa in the reducing condition, confirming that BAT1 and rBAT are linked via a disulfide bond. The BAT1 and rBAT proteins were shown to be colocalized in the apical membrane of the renal proximal tubules where massive cystine transport had been proposed. When expressed in COS-7 cells with rBAT, but not with 4F2hc, BAT1 exhibited a Na(+)-independent transport of cystine as well as basic and neutral amino acids with the properties of system b(0,+). The results from the present investigation were used to establish a family of amino acid transporters associated with type II membrane glycoproteins.  相似文献   

9.
Infection of rodent cells by ecotropic type C retroviruses requires the expression of a cationic amino acid transporter composed of multiple membrane-spanning domains. By exchanging portions of cDNAs encoding the permissive mouse and nonpermissive human transporters and examining their abilities to specify virus infection upon expression in human 293 cells, we have identified the amino acid residues in the extracellular loop connecting the fifth and sixth membrane-spanning segments of the mouse transporter that are required for both envelope gp70 binding and infection. These findings strongly suggest that the role of the mouse transporter in determining infection is to provide an envelope-binding site. This role is analogous to those of host membrane proteins composed of a single membrane-spanning domain that serve as binding proteins or receptors for other enveloped viruses such as human immunodeficiency virus, Epstein-Barr virus, and murine and human coronaviruses.  相似文献   

10.
M Caggana  P Chan    A Ramsingh 《Journal of virology》1993,67(8):4797-4803
To identify the molecular determinants of virulence for coxsackievirus B4, a panel of recombinant, chimeric viruses were constructed from cDNA clones of a virulent virus, CB4-V, and a nonvirulent virus, CB4-P. Initial studies mapped a major determinant of virulence to the 5' end of the viral genome, which contained the 5' untranslated and the P1 regions (A. Ramsingh, A. Hixson, B. Duceman, and J. Slack, J. Virol. 64:3078-3081, 1990). To determine whether the 5' untranslated region contributed to the virulent phenotype, a chimeric virus (vCB403) containing this region of the virulent virus on an avirulent background was tested in mice. The vCB403 construct displayed a phenotype similar to that of CB4-P, suggesting that the 5' untranslated region did not significantly contribute to virulence. Analysis of the sequence data of the P1 regions of both CB4-V and CB4-P revealed five mutations that resulted in amino acid substitutions in VP1, VP2, and VP4 (A. Ramsingh, H. Araki, S. Bryant, and A. Hixson, Virus Res. 23:281-292, 1992). Analysis of individual mutations in both VP1 and VP2 revealed that a single residue (Thr-129 of VP1) determined the virulent phenotype.  相似文献   

11.
Detergent binding studies indicated that the neural enzyme, acetylcholinesterase, did not exhibit the properties of an integral membrane protein. The 11S form was isolated by affinity chromatography from a tryptic digest and the 14S and 18S forms in like manner from an undigested preparation. Studies were performed with [3H]TX-100 to determine the extent of binding by these forms and with catalase and human low density lipoprotein as reference proteins. All forms of the enzyme bound less than 0.04 mg TX-100/mg protein which is only slightly higher than binding by catalase and about 25 fold lower than the binding exhibited by low density lipoprotein.  相似文献   

12.
We have performed a comparative analysis of amino acid distributions in predicted integral membrane proteins from a total of 107 genomes. A procedure for identification of membrane spanning helices was optimized on a homology-reduced data set of 170 multi-spanning membrane proteins with experimentally determined topologies. The optimized method was then used for extraction of highly reliable partial topologies from all predicted membrane proteins in each genome, and the average biases in amino acid distributions between loops on opposite sides of the membrane were calculated. The results strongly support the notion that a biased distribution of Lys and Arg residues between cytoplasmic and extra-cytoplasmic segments (the positive-inside rule) is present in most if not all organisms.  相似文献   

13.
1. A procedure was devised that allows the membrane-skeletal proteins brain spectrin and ankyrin to be extracted selectively from a membrane-skeletal preparation, together with some actin, an Mr-103,000 protein and a population of glycoproteins. 2. Ankyrin-binding activities of the glycoproteins were investigated by affinity chromatography. We detected only one, Mr 205,000, that binds ankyrin and is prevented from binding by the cytoplasmic domain of Band 3, the established erythrocyte-membrane-binding site for ankyrin. The Mr-205,000 glycoprotein, designated ABGP205, may be a candidate for a membrane-binding site for ankyrin.  相似文献   

14.
Lysine decarboxylase (LDC, EC 4.1.1.18) from Selenomonas ruminantium has decarboxylating activities towards both L-lysine and L-ornithine with similar K(m) and Vmax. Here, we identified four amino acid residues that confer substrate specificity upon S. ruminantium LDC and that are located in its catalytic domain. We have succeeded in converting S. ruminantium LDC to an enzyme with a preference in decarboxylating activity for L-ornithine when the four-residue of LDC were replaced by the corresponding residues of mouse ornithine decarboxylase (EC 4.1.1.17).  相似文献   

15.
Oxidation of n-alkanes in bacteria is normally initiated by an enzyme system formed by a membrane-bound alkane hydroxylase and two soluble proteins, rubredoxin and rubredoxin reductase. Pseudomonas aeruginosa strains PAO1 and RR1 contain genes encoding two alkane hydroxylases (alkB1 and alkB2), two rubredoxins (alkG1 and alkG2), and a rubredoxin reductase (alkT). We have localized the promoters for these genes and analyzed their expression under different conditions. The alkB1 and alkB2 genes were preferentially expressed at different moments of the growth phase; expression of alkB2 was highest during the early exponential phase, while alkB1 was induced at the late exponential phase, when the growth rate decreased. Both genes were induced by C(10) to C(22)/C(24) alkanes but not by their oxidation derivatives. However, the alkG1, alkG2, and alkT genes were expressed at constant levels in both the absence and presence of alkanes.  相似文献   

16.
The gene encoding the endo-beta-N-acetylglucosaminidase from Flavobacterium sp. (Endo-Fsp) was sequenced. The Endo-Fsp gene was overexpressed in Escherichia coli cells, and was purified from inclusion bodies after denaturation by 8 M urea. The renatured Endo-Fsp had the same optimum pH and substrate specificity as the native enzyme. Endo-Fsp had 60% sequence identity with the endo-beta-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H), and the putative catalytic residues were conserved. Site-directed mutagenesis was done at conserved residues based on the three-dimensional structure and mutagenesis of Endo-H. The mutant of Glu-128, corresponding to Glu-132 in Endo-H and identified as an active site residue, was inactivated. Mutagenesis around the predicted active site of Endo-Fsp reduced the enzymatic activity. Moreover, the hydrolytic activity toward hybrid-type oligosaccharides was decreased compared to that toward high-mannose type oligosaccharides by mutagenesis of Asp-126 and Asp-127. Therefore, site-directed mutagenesis of some of these conserved residues indicates that the predicted active sites are essential to the enzymatic activity of Endo-Fsp, and may have similar roles in catalysis as their counterparts in Endo-H.  相似文献   

17.
18.
Using 11C-labeled natural amino acids, the functional diagnosis of tissue metabolism has been actively studied. Our interest has been focused on developing a clinically available 123I-labeled artificial amino acid with a single metabolic function. For this study, [123I]3-iodo-d-tyrosine ([123I]d-MIT) was selected. In vitro and in vivo studies using 125I-labeled d-MIT indicated that it showed a high pancreatic accumulation, selective affinity for membrane active transport systems, and was stable against enzymatic deiodination. A canine scintigraphic study using 123I-labeled d-MIT and kinetic analysis showed that it behaved as an “artificial amino acid” radiopharmaceutical with selective membrane amino acid transport affinity in the pancreas.  相似文献   

19.
Rhodococcus sp. TMP2 is an alkane-degrading strain that can grow with a branched alkane as a sole carbon source. TMP2 degrades considerable amounts of pristane at 20 degrees C but not at 30 degrees C. In order to gain insights into microbial alkane degradation, we characterized one of the key enzymes for alkane degradation. TMP2 contains at least five genes for membrane-bound, non-heme iron, alkane hydroxylase, known as AlkB (alkB1-5). Phylogenetical analysis using bacterial alkB genes indicates that TMP2 is a close relative of the alkane-degrading bacteria, such as Rhodococcus erythropolis NRRL B-16531 and Q15. RT-PCR analysis showed that expressions of the genes for AlkB1 and AlkB2 were apparently induced by the addition of pristane at a low temperature. The results suggest that TMP2 recruits certain alkane hydroxylase systems to utilize a branched alkane under low temperature conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号