首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh, unprocessed bone is ground to sections 75-100 μ thick, stained in an aqueous solution composed of fast green FCF, 0.1 gm; orange G, 2.0 gm; distilled water, 100.0 ml; and adjusted to pH 6.65, then in a mixture of 1 part alcoholic solution of 0.25% celestine blue B and 9 parts of alcoholic solution of 0.1% basic fuchsin. Surface stain is removed by grinding sections to 50 μ and washing them in 1% invert soap (Zephiran) to remove adherent debris. (Commercial detergents and alkaline soaps may interfere with chromophore groups of the dyes.) Wash in tap water; rinse in distilled water and differentiate in 1% acetic alcohol. Dehydrate in ascending alcohols, clear in xylene and mount permanently in a neutral, synthetic resin. Active osteoid seams stain dark to light green; resting osteoid seams, red to bright orange red; transitional osteoid seams, geenish-yellow, orange red to red; older, partly mineralized matrix, orange; new, partly mineralized matrix, red; osteocyte nuclei, red; osteoblasts and osteoclasts, greenish-blue to dark purple nuclei and green or light green cytoplasm. Hyper-trophic and differentiating cartilage cells are stained light pink and dark red respectively. The staining reactions are consistent; the solutions are stable.  相似文献   

2.
In preparation for light microscopy, ascocarps of Sordaria fimicola Ces. & DeNot. were embedded in Spurr's medium and sectioned at 1-1.5 μm on an ultramicrotome. Sections were floated on Giemsa staining solution at 60 C for 10-30 min, washed in distilled water, affixed to slides by drying, and mounted in immersion oil. Best preservation of the delicate sterile tissues of the centrum was obtained by fixation in 1% KMnO4 for 2.5-3 hr, followed by the Giemsa stain. This method is suggested for future studies on the morphology of perithecial ascomycetes.  相似文献   

3.
Tissues from representative mammals, amphibia and invertebrates were fixed for 5-24 hr in either an aqueous solution of 8% p-toluene sulfonic acid (PTSA) or in 10% formalin to which 5 gm PTSA/100 ml had been added, and processed through embedding in polyethylene glycol 400 distearate in the usual manner. Sections cut at 4-6 μ were floated on 0.2% gelatin containing 1.25% formalin, and spread and dried on slides at a temperature not exceeding 25 C. Wax was removed with xylene, and the sections brought to water through ethanol as usual. The working staining solution was made from three stock solutions: A. Chlorantine fast blue 2RLL, 0.5%; B. Cibacron turquoise blue G-E, 0.5%; C. Procion red M-P, 0.5%—each of which was dissolved in 98.5 ml of distilled water to which 0.5 ml of glacial acetic acid and 0.5 ml of propylene glycol monophenyl ether (a fungicide) had been added. For use, the three solutions were mixed in the proportions: A, 3; B, 4; and C, 3 volumes. Staining time was uncritical, 10-30 min usually sufficing for 6 μ, sections. The chief feature of the staining is the differentiation of oxygenated and nonoxygenated red blood corpuscles, in reds and blues respectively. Connective tissue stained blue or blue-green and mucin, green. Nuclei and cytoplasm stain according to their condition at the time of fixation. The mixed stain keeps well, remaining active after 2 yr of storage.  相似文献   

4.
Thin (0.5-1 μ) sections of plastic-embedded, OsO4-fixed tissues were attached to glass slides by heating to 70 C for 1 min. A saturated solution combining toluidine blue and malachite green was prepared in ethanol (8% of each dye) or water (4% of each dye). Methacrylate or epoxy sections were stained in the ethanol solution for 2-5 min. The water solution was more effective for some epoxy sections (10-80 min). Epoxy sections could be mordanted by 2% KMnO4, in acetone (1 min) before use of the aqueous dye, reducing staining time to 5-10 min and improving contrast. Aqueous basic fuchsin (4%) was used as the counter-stain in all cases; staining time varied from 1-30 min depending upon the embedding medium and desired effects, methacrylate sections requiring the least time. In the completed stain, nuclei were blue to violet; erythrocytes and mitochondria, green; collagen and elastic tissue, magenta; and much and cartilage, bright cherry red. Sections were coated with an acrylic resin spray and examined or photographed with an oil-immersion lens.  相似文献   

5.
A new staining method has been developed for the study of nerve cells and Nissl granules which combines three basic dyes, cresylecht violet, toluidine blue and thionin. The use of this tri-basic-dye stain results in finished preparations that are critically stained and permanent. Paraffin sections (4 μ sections preferably) are mounted on slides by the starch medium, deparaffinized and stained by the tribasic staining solution. After differentiation in acidified distilled water, sections are dehydrated, returned to stain solution and again dehydrated, then cleared and mounted in Clarite. Various vertebrate material including normal and pathological human tissues have been stained with this triple dye solution. Especially for pathological material, re-immersion of slides in the staining and 80% alcohol solutions before mounting, differentially intensifies the staining reaction. Fixatives used were 10% formalin, 95% alcohol, Bouin and formalin-Bouin (10% formalin followed by Bouin).  相似文献   

6.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

7.
Sections of 6 μ from tissues fixed in Susa or in Bouin's fluid (without acetic acid) and embedded in paraffin were attached to slides with Mayer's albumen, dried at 37 C for 12 hr, deparaffinized and hydrated. The sections fixed in Susa were transferred to a I2-K1 solution (1:2:300 ml of water); rinsed in water, decolorized in 5% Na2S2O3; washed in running water, and rinsed in distilled water. Those fixed in Bouin's were transferred to 80% alcohol until decolorized, then rinsed in distilled water. All sections were stained in 1% aqueous phloxine, 10 min; rinsed in distilled water and transferred to 3% aqueous phosphotungstic acid, 1 min; rinsed in distilled water; stained 0.5 min in 0.05 azure II (Merck), washed in water; and finally, nuclear staining in Weigert's hematoxylin for 1 min was followed by a rinse in distilled water, rapid dehydration through alcohols, clearing in xylene and covering in balsam or a synthetic resin. In the completed stain, islet cells appear as follows: A cells, purple; B cells, weakly violet-blue; D cells, light blue with evident granules; exocrine cells, grayish blue with red granules.  相似文献   

8.
During investigations into the cholinergic innervation of blood vessels in skeletal muscle, it was found that poststaining of sections with Giemsa's stain (Gurr, R66) after incubation to reveal acetylcholinesterase activity as copper ferrocyanide (El-Badawi and Schenk 1967) not only produced nuclear and cytoplasmic counter-staining, but also resulted in intensification of the reaction, resulting in deep blue-black nerve endings (Fig. 1). Areas previously distinguishable only by phase contrast were easily recognizable after Giemsa staining. The method described was originally used on 10 μm cryostat sections, pre- or postfixed in formolcalcium and stained in the reaction mixture described by El-Badawi and Schenk (1967) for 30-60 minutes. After rinsing in distilled water (5 min), sections were stained in Giemsa's stain (3 min), washed well in distilled water, rapidly dehydrated, cleared and mounted.  相似文献   

9.
Formalin-fixed, decalcified knee joints of young vertebrates were embedded in paraffin wax and cut at 4 μ. Sections were stained in Harris' Haematoxylin, washed in tap water, then immersed in the following staining solution for 60 min: crystal violet, 1 gm; resorcin, 2 gm; distilled water, 100 ml; boiled for 3 min, with constant stirring. After adding 30 ml of 30% FeCl3, it was boiled for 3 min more. The solution was filtered. The precipitate was washed oil with 50 ml of distilled water and 100 ml of absolute alcohol added. This was combined with the original filtrate and boiled for 5 min. The solution was filtered once more, the precipitate discarded and 2 ml of cone. HC1 added. After cooling, the solution was ready for use. Sections were then washed briefly in tap water, stained in van Gieson's picro-fuchsin for 2 min, and differentiated as they were dehydrated and brought to Xylene. The sections were mounted in a synthetic resin (D.P.X.). Articular type cartilage stains red and growth cartilage blue.  相似文献   

10.
Extensive experimentation with protargol staining of neurons in celloidin and frozen sections of organs has resulted in the following technic: Fix tissue in 10% aqueous formalin. Cut celloidin sections IS to 25 μ, frozen sections 25 to 40 μ. Place sections for 24 hours in 50% alcohol to which 1% by volume of NH4OH has been added. Transfer the sections directly into a 1% aqueous solution of protargol, containing 0.2 to 0.3 g. of electrolytic copper foil which has been coated with a 0.5% solution of celloidin, and allow to stand for 6 to 8 hours at 37° C. Caution: In this and the succeeding step the sections must not be allowed to come in contact with the copper. From aqueous protargol, place the sections for 24 to 48 hours at 37° C. directly into a pyridinated solution of alcoholic protargol (1.0% aqueous solution protargol, 50 ml.; 95% alcohol, 50 ml.; pyridine, 0.5 to 2.0 ml.), containing 0.2 to 0.3 g. of coated copper. Rinse briefly in 50% alcohol and reduce 10 min. in an alkaline hydroquinone reducer (H3BO3, 1.4 g.; Na2SO3, anhydrous, 2.0 g.; hydroquinone, 0.3 g.; distilled water, 85 cc; acetone, 15 ml.). Wash thoroly in water and tone for 10 min. in 0.2% aqueous gold chloride, acidified with acetic acid. Wash in distilled water and reduce for 1 to 3 min. in 2% aqueous oxalic acid. Quickly rinse in distilled water and treat the sections 3 to 5 min. with 5% aqueous Na2S2O3+5H2O. Wash in water and stain overnight in Einarson's gallocyanin. Wash thoroly in water and place in 5% aqueous phosphotungstic acid for 30 min. From phosphotungstic acid transfer directly to a dilution (stock solution, 20 ml.; distilled water, 30 ml.) of the following stock staining solution: anilin blue, 0.01 g.; fast green FCF, 0.5 g.; orange G, 2.0 g.; distilled water, 92.0 ml.; glacial acetic acid, 8 ml.) and stain for 1 hour. Differentiate with 70% and 95% alcohol; pass the sections thru butyl alcohol and cedar oil; mount.  相似文献   

11.
Experiments were performed in an attempt to obtain a rapid method for staining the chromophilic substance of formalin-fixed nerve cells differentially without resorting to over-staining and subsequent acid-decolorizing. A satisfactory procedure using thionin in dilute buffered solutions was developed: Prepare a stock solution of the dye using 1 g. in 100 ml. of distilled water. Prepare veronal-acetate buffers (Michaelis, 1931) in the range of pH 5 to pH 3.S. To each 10 ml. of the buffer add 0.5 ml. of the stock dye solution. After rinsing in CO2-free distilled water place mounted or unmounted sections in this solution. (Freshly fixed material, 10μ to 20μ thick, is completely stained in 10 to 20 minutes but over-staining does not occur when longer times are allowed.) Return sections to distilled water (2 changes) and wash until diffusion of excess dye is no longer visible. Wash in 70% ethyl alcohol (2 changes) until diffusion of excess dye is no longer visible. Dehydrate in 95% ethyl alcohol and normal butyl alcohol, clear and mount.

Optimum staining of chromophilic material occurs at pH 3.65. Glial processes are well stained at pH 4.6. Nissl bodies and glial cytoplasm are purplish blue, nuclear chromatin is blue, background is clear at pH 3.65 but pale blue at pH 4.9.  相似文献   

12.
Tissues were fixed for 30 min In cold (0-2° C) 1% OsO4 (Palade) buffered at pH 7.7, to which 0.1% MgCl2 was added. Dehydration was in a graded ethanol series (containing 0.5% MgCl2) at 0-2° C, and terminated with 2 changes of absolute ethanol. Tissues were then transferred by a graded series to anhydrous acetone. Infiltration of the tissue with Vestopal-W (a polyester resin), is gradual with the aid of graded solutions of Vestopal-W in acetone. The infiltrated tissue is encapsulated and initial polymerization is done under ultraviolet light at room temperature for 8-16 hr. This is followed by final hardening at 60° C for 36-48 hr. Sections (0.2-1 μ) were cut, dried on slides, placed in acetone for 1 min and then treated by either of the following staining procedures: (1) Thionin-azure-fuchsin staining: Flood the preparation with 0.2% aqueous thionin and heat to 60-80° C for 3 min; if the preparation begins to dry, add stain. Rinse in distilled water. Flood the slide with 0.2% azure B in phosphate buffer at pH 9. Heat to 60-80° C for 3 min; do not permit the preparation to dry. Rinse in distilled water. Dip the slide in MacCallum's variant of Goodpasture's carbol-fuchsin stain for 1-2 sec. Rinse in distilled water. Check the preparation microscopically for intensity of the fuchsin stain. Repeat dips as may be needed to obtain the desired intensity. Rinse in distilled water. Dehydrate quickly in 95% and absolute alcohol; clear in 2 changes of xylene and cover in Permount or similar synthetic resin. (2) Thionin-azure counterstain for the periodic acid-Schiff reaction: Oxidize the tissue in 0.5% periodic acid for 15 min and transfer to Schiff's leucofuchsin solution for 30 min. Counterstain with 0.5% aqueous thionin for 3 min; wash in distilled water; stain in 0.2% azure B in phosphate buffer at pH 5.5; wash in distilled water; dehydrate; clear and cover as in the first method. For temporary preparations let dry after absolute alcohol and apply a drop of immersion oil directly on the section.  相似文献   

13.
Differential staining of cell components of spermatozoa is readily accomplished in Epon or Araldite sections 0.5-1 μ thick from rat and hamster testis and epididymis, and stained as follows: 1% aqueous toluidine blue buffered at pH 6, 0.5-3 min at 90 C; washed in distilled water; 1% basic fuchsin in 50% alcohol, 3-5 min at 20-25 C; differentiated with 70% alcohol; allowed to dry; and mounted in a resin of high refraction (DPX was used). Results: acrosome, bright magenta; nucleus, deep blue; mitochondrial sheath of the middle-piece, pinkish purple; and tail, pale red. This procedure combined with staining of collagen by applying 2% aqueous phosphotungstic acid 1-2 min as a mordant, followed by 1% light green in 50% alcohol containing 1% acetic acid, 1-2 min at 20-25 C, gives polychromatic staining and is useful as a general stain for other epoxy-embedded tissues.  相似文献   

14.
Dyes used in the 3 methods recommended are: I, thionin and acridine orange (T-AO); II, Janus green and Darrow red (JG-DR); III, methyl green and methyl violet (MG-MV). The first 2 methods were two-solution stains, applied in sequence; the third, required only one solution since methyl violet is present in commercial methyl green. Staining solution and timing was as follows: Method I. 0.1% thionin in a 45% ethanolic solution of 0.01 N NaOH, 5 min at 70 C; rinsing in water and followed by 1 min in a 1% aqueous solution of acridine orange made up in 0.02 N NaOH, also at 70 C, then washed, and dried on slides. Method II. 0.5% Janus green in aqueous 0.05 N NaOH, 5 min at 70 C; rinsing in water then into 0.5% Darrow red in 0.05 N NaOH (aq.), 2 min at 70 C., washing, and drying on slides. Method III. 1% methyl green (commercial, unpurified) in 1% aqueous borax for 15-20 min at 20-25 C, washing and attaching to slides. All staining was performed by floating the sections on the staining solutions, all drying at 70 C, and mounting in a resinous medium. T-AO gave blue to violet cytoplasmic structures, darker nuclei which contrasted strongly with yellow connective tissue and the secretion of goblet cells. JG-DR resembled a hematoxylineosin stain, but by shortening the staining time in DR to 0.5-1 min, collagenous and elastic tissue retained more of the green dye. MG-MV gave dark green nuclei in light green cytoplasm, with collagenous and elastic tissues in blue to violet. As with most methods for staining ultrathin sections, thicknesses of less than 1 μ required longer staining times.  相似文献   

15.
Thin sections of leaves and anthers of Beta vulgaris L., fixed in glutaraldehyde-OsO4 and embedded in epoxy resin, were stained with different stains at pH ranges from 5 to 9 at 50 C to select those that provided polychromatic staining of suitable intensity. The thionin derivatives, Azure B, Toluidine Blue O, and polychrome Methylene Blue provided adequate staining, as did the commercially prepared stain Paragon PS 1301. Azure B stain was superior for sugar beet 0.5μ monitor sections: cytoplasm appeared grey; nuclei, blue-gray; nucleoli, blue; chloroplasts, blue-green; primary walls, blue; and secondary walls, light blue. Choice of one of the stains mentioned probably would depend upon the plant material under study.  相似文献   

16.
After testing various procedures (amidoblack 10B, acid fuchsin-methyl blue, Luxol fast blue MBS-phloxine, toluidine blue O, Jams green B and pinacyanol), three stains can be recommended for staining both types of mitochondria (globose and threadlike) in the cells of Saccharomyces cerevisiae: (1) 0.1% solution of amidoblack 10B in citrate buffer (pH 3.0) for 10 min; (2) 0.01% solution of toluidine blue O in phosphate buffer (pH 6.0) for 30 min; (3) 0.01% solution of Janus green B in distilled water (pH 5.6) for 30 min. The latter stain is most specific because its staining reaction depends upon the action of the mitochondrial enzyme cytochrome c oxidase. Yet, low concentrations and short incubation periods must be applied to avoid poisoning of the cell metabolism.  相似文献   

17.
The authors have found a modification of the Feulgen reaction to be a satisfactory stain for tissue in the block.

Pieces of fresh mammalian tissue not thicker than 5 mm. are fixed for approximately 48 hours at 25° C. in a mixture of equal parts of 5% aqueous sulfosalicylic acid and saturated aqueous picric acid. They are washed for 30 minutes in three ten-minute changes of distilled water and placed in Feulgen's staining solution diluted to one-half strength with distilled water. The staining solution is allowed to act for 24 hours (2 to 3 mm. thick blocks) up to 48 hours for 5 mm. thickness. After staining, the specimens are transferred to a mixture of sodium bisulfite, 0.5 g. and N hydrochloric acid, 5 ml. in' 100 ml. of distilled water. Two changes of IS to 30 min. each in the acid sulfite are given and these are followed by dehydration through 50%, 70% and 95% alcohol. One to two hours are allowed for each change except the last 95%, in which the stained tissue is allowed to remain overnight. The dehydration is completed in two changes of absolute alcohol with subsequent clearing in xylene and embedding in paraffin. Sections may be cut 10 μ or other thickness desired, mounted on slides, paraffin removed, and covered in the usual manner. Nuclei stain reddish violet against a lemon yellow background when the stain is typical. Orange G, 200 mg. per 100 ml. may be added to the fixing fluid if a more polychromatic effect is desired.  相似文献   

18.
Tissue blocks 2 × 2 × 0.4 cm were fixed 6-24 hr in phosphate-buffered 5% glutaraldehyde then sliced to 2 × 2 × 0.1 cm and soaked in 0.1 phosphate-buffer (pH 7.3) for at least 12 hr. Fixation was continued for 2 hr in phosphate-buffered 1-2% OsO4. The slices were dehydrated, infiltrated with Araldite, and embedded in flat-bottomed plastic molds. Sectioning at 1-8 μ with a sliding microtome was facilitated by addition of 10% dibutylphthalate to the standard epoxy mixture. The sections were spread on warm 1% gelatin and attached to glass slides by drying, baking at 60 C, fixing in 10% formalin or 5% glutaraldehyde and baking again. Sections were mordanted in 5% KMnO4 (5 min), bleached with 5% oxalic acid (5 min) and neutralized in 1% Li2CO3 (1 min). Several stains could then be applied: azure B, toluidine blue, azure B-malachite green, Stirling's gentian violet, MacCallum's stain (modified), tribasic stain (modified) and phosphotungstic acid-hematoxylin. Nuclei, mitochondria, specific granules, elastic tissue or collagen were selectively emphasized by appropriate choice of staining procedures, and cytologic detail in 1-3 μ sections was superior to that shown by conventional methods. Selected areas from adjacent 4-8 μ sections could be re-embedded for ultramicrotomy and electron microscopy.  相似文献   

19.
Autopsy and biopsy specimens of human skin were fixed overnight in alcoholic Bouin's solution, embedded in paraffin, cut at 7 μ, deparaffinized, hydrated to 70% alcohol, and treated as follows—stained 2 hours in a mixture consisting of: 0.2% orcein in 70% alcohol and 1% HC1 (conc.), 125 ml; 5% hematoxylin in absolute alcohol, 40 ml; 6% FeCl3 in water, 25 ml; and aqueous I2-KI (1:2:100), 25 ml—rinsed in distilled water until the excess stain was removed—differentiated in 1.2% FeCl3, 5-15 sec—washed in running water, 5 min—differentiation completed in 0.01% HC1 acid-alcohol, 1 min—a dip in 95% alcohol—distilled water, 2 min—0.25% aqueous metanil yellow, 5-10 sec—a 95% alcohol dip—dehydrated in absolute alcohol, xylene, and mounted in a resinous medium. The technic combines the orcein of Pinkus' stain and the hematoxylin mixture of Verhoeff into a single staining solution and gives sharp and reliable results for both coarse and extremely delicate elastic fibers. These stain purple; nuclei, violet; and background, yellow. The stain allows the use of formalin, Bouin's fluid and Zenker-formol fixation. The results have been consistent in other primates as well as in man.  相似文献   

20.
A staining procedure for the anterior hypophysis of the rat, differentiating between eosinophilic granules, basophilic granules and mitochondria, has been divised. Small pieces of hypophyseal tissue are fixed in Champy's fluid. Following fixation the tissue is either chromated or osmicated. After being embedded in 60-62° paraffin, the tissue is cut serially at 2 and 3 μ. The sections are stained with 7% Altmann's acid fuchsin by heating on a laboratory hot plate, followed by 30 seconds in a 2% solution of Orange G made up in 1% phosphomolybdic acid. They are then treated for 10 seconds in a .01% solution of potassium carbonate, and stained for 10-30 minutes in Goodpasture's acid polychrome methylene blue. The mitochondria stain brilliant fuchsia, the eosinophilic granules orange-red, and the basophilic granules deep blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号