首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The adhesion of tumour cells to the endothelial cells of blood vessels of the microcirculation represents a crucial step in haematogenous metastasis formation. Similar to leukocyte extravasation, selectins mediate initial tumour cell rolling on endothelium. An additional mechanism of leukocyte adhesion to endothelial cells is mediated by hyaluronan (HA). However, data on the interaction of tumour cells with hyaluronan under shear stress are lacking. The expression of the hyaluronan binding protein CD44 on tumour cell surfaces was evaluated using flow cytometry. The adhesion of tumour cells to HA with regard to adhesive events and rolling velocity was determined in flow assays in the human small cell lung cancer (SCLC) cell lines SW2, H69, H82, OH1 and OH3, the colon carcinoma cell line HT29 and the melanoma cell line MeWo. Hyaluronan deposition in human and mouse lung blood vessels was histochemically determined. MeWo adhered best to HA followed by HT29. SCLC cell lines showed the lowest CD44 expression on the cell surface and lowest number of adhesive events. While hyaluronan was deposited in patches in the microvasculature of the alveolar septum in the human lung, it was only present in the periarterial space in the mouse lung. Certain tumour entities bind to HA under physiological shear stresses so that HA can be considered a further ligand for cell extravasation in haematogenous metastasis. As hyaluronan is deposited within the pulmonary microvasculature, it may well serve as a ligand for its binding partner CD44, which is expressed by many tumour cells.  相似文献   

2.
Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular endothelial cells and delays the onset of EAE. These effects could be due to the elimination of hyaluronan or the generation of hyaluronan digestion products that influence lymphocytes or endothelial cells. Here, we found that hyaluronan dodecasaccharides impaired activated lymphocyte slow rolling on brain vascular endothelial cells when applied to lymphocytes but not to the endothelial cells. The effects of hyaluronan dodecasaccharides on lymphocyte rolling were independent of CD44 and a receptor for degraded hyaluronan, Toll-like receptor-4. Subcutaneous injection of hyaluronan dodecasaccharides or tetrasaccharides delayed the onset of EAE in a manner similar to subcutaneous injection of hyaluronidase. Hyaluronan oligosaccharides can therefore act directly on lymphocytes to modulate the onset of inflammatory demyelinating disease.  相似文献   

3.
《The Journal of cell biology》1996,134(4):1075-1087
Little is known about how lymphocytes migrate within secondary lymphoid organs. Stromal cells and their associated reticular fibers form a network of fibers that radiate from high endothelial venules to all areas of the lymph node and may provide a scaffold for lymphocyte migration. We studied interactions of lymphocytes with cultured human tonsillar stromal cells and their extracellular matrix using shear stress to distinguish transient interactions from firm adhesion. Tonsillar lymphocytes and SKW3 T lymphoma cells tethered and rolled on monolayers of cultured tonsillar stromal cells and their matrix. A significant proportion of these rolling interactions were independent of divalent cations and were mediated by CD44 binding to hyaluronan, as shown by inhibition with mAb to CD44, soluble hyaluronan, as hyaluronidase treatment of the substrate, and O-glycoprotease treatment of the rolling cells. O-glycoprotease treatment of the substrate also blocked binding completely to stromal matrix and partially to stromal monolayers. SKW3 cells tethered and rolled on plastic-immobilized hyaluronan, confirming the specificity of this interaction. By contrast, monolayers of resting or stimulated human umbilical vein endothelial cells failed to support CD44- and hyaluronan-dependent rolling. SKW3 cells added under flow conditions to frozen sections of human tonsil bound and rolled along reticular fibers in the presence of EDTA. Rolling was blocked by either CD44 mAb or hyaluronan. We propose that lymphocytes migrating through secondary lymphoid organs may use CD44 to bind to hyaluronan immobilized on stromal cells and reticular fibers.  相似文献   

4.
Interactions between CD44 and hyaluronan are implicated in the primary adhesion of lymphocytes to endothelium at inflammatory locations. Here we show that preincubation of hyaluronan with full-length recombinant TSG-6 or its Link module domain (Link_TSG6) enhances or induces the binding of hyaluronan to cell surface CD44 on constitutive and inducible cell backgrounds, respectively. These effects are blocked by CD44-specific antibodies and are absent in CD44-negative cells. Enhancement of CD44-mediated interactions of lymphoid cells with hyaluronan by TSG-6 proteins was seen under conditions of flow at shear forces that occur in post-capillary venules. Increases in the number of rolling cells were observed on substrates comprising TSG-6-hyaluronan complexes as compared with a substrate containing hyaluronan alone. In ligand competition experiments, cell surface-bound TSG-6-hyaluronan complexes were more potent than hyaluronan alone in inhibiting cell adhesion to immobilized hyaluronan. Link_TSG6 mutants with impaired hyaluronan binding function had a reduced ability to modulate ligand binding by cell surface CD44. However, some mutants that exhibited close to wild-type hyaluronan binding were found to have either reduced or increased activity, suggesting that some amino acid residues outside of the hyaluronan binding site might be involved in protein self-association, potentially leading to the formation of cross-linked hyaluronan fibers. In turn, cross-linked hyaluronan could increase the binding avidity of CD44 by inducing receptor clustering. The ability of TSG-6 to modulate the interaction of hyaluronan with CD44 has important implications for CD44-mediated cell activity at sites of inflammation, where TSG-6 is expressed.  相似文献   

5.
CD44 can function as an adhesion receptor that mediates leukocyte rolling on hyaluronan (HA). To study the contributions of different domains of the standard isoform of CD44 to cell rolling, a CD44-negative mouse T lymphoma AKR1 was transfected with wild type (WT) or mutated cDNA constructs. A parallel flow chamber was used to study the rolling behavior of CD44 transfectants on immobilized HA. For CD44WT transfectants, the fraction of cells that rolled and the rolling velocity was inversely proportional to the amount of cell surface CD44. When the cytoplasmic domain distal to Gly(305) or sequences that serve as binding sites for cytoskeletal linker proteins, were deleted or replaced with foreign sequences, no significant changes in the rolling behavior of mutant cells, compared with the transfectant expressing CD44WT, were observed. Transfectants lacking 64 amino acids of the cytoplasmic tail distal to Cys(295) adhered to HA but showed enhanced rolling at low shear forces. When 83 amino acids from the "non-conserved" membrane-proximal region of the CD44 extracellular domain were deleted, cells adhered firmly to the HA substrate and did not roll at any fluid shear force tested. Unlike wild type cells that exhibited a nearly homogeneous distribution of CD44 on a smooth cell surface, cells expressing the non-conserved region deletion mutant accumulated CD44 in membrane protrusions. Disruption of the actin cytoskeleton with cytochalasin B precluded the formation of membrane protrusions, however, treated cells still adhered firmly to HA and did not roll. We conclude that interaction between the cytoplasmic domain of CD44 and the cytoskeleton is not required for cell rolling on immobilized ligand. The strong effect of deletion of the non-conserved region of the extracellular domain argues for a critical role of this region in CD44-dependent rolling and adhesion interactions with HA under flow.  相似文献   

6.
Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow.  相似文献   

7.
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are unclear. We find that CD44−/− mice have a delayed onset of EAE compared with wild type animals. Using an in vitro lymphocyte rolling assay, we find that fewer slow rolling (<1 μm/s) wild type (WT) activated lymphocytes interact with CD44−/− brain vascular endothelial cells (ECs) than with WT ECs. We also find that CD44−/− ECs fail to anchor HA to their surfaces, and that slow rolling lymphocyte interactions with WT ECs are inhibited when the ECs are treated with a pegylated form of the PH20 hyaluronidase (PEG-PH20). Subcutaneous injection of PEG-PH20 delays the onset of EAE symptoms by ∼1 day and transiently ameliorates symptoms for 2 days following disease onset. These improved symptoms correspond histologically to degradation of HA in the lumen of CNS blood vessels, decreased demyelination, and impaired CD4+ T-cell extravasation. Collectively these data suggest that HA tethered to CD44 on CNS ECs is critical for the extravasation of activated T cells into the CNS providing new insight into the mechanisms promoting inflammatory demyelinating disease.  相似文献   

8.
Hyaluronan.   总被引:22,自引:0,他引:22  
Hyaluronan (hyaluronic acid) is a high-molecular-mass polysaccharide found in the extracellular matrix, especially of soft connective tissues. It is synthesized in the plasma membrane of fibroblasts and other cells by addition of sugars to the reducing end of the polymer, whereas the nonreducing end protrudes into the pericellular space. The polysaccharide is catabolized locally or carried by lymph to lymph nodes or the general circulation, from where it is cleared by the endothelial cells of the liver sinusoids. The overall turnover rate is surprisingly rapid for a connective tissue matrix component (t1/2 0.5 to a few days). Hyaluronan has been assigned various physiological functions in the intercellular matrix, e.g., in water and plasma protein homeostasis. Hyaluronan production increases in proliferating cells and the polymer may play a role in mitosis. Extensive hyaluronidase-sensitive coats have been identified around mesenchymal cells. They are either anchored firmly in the plasma membrane or bound via hyaluronan-specific binding proteins (receptors). Such receptors have now been identified on many different cells, e.g., the lymphocyte homing receptor CD 44. Interaction between a hyaluronan receptor and extracellular polysaccharide has been connected with locomotion and cell migration. Hyaluronan seems to play an important role during development and differentiation and has other cell regulatory activities. Hyaluronan has also been recognized in clinical medicine. A concentrated solution of hyaluronan (10 mg/ml) has, through its tissue protective and rheological properties, become a device in ophthalmic surgery. Analysis of serum hyaluronan is promising in the diagnosis of liver disease and various inflammatory conditions, e.g., rheumatoid arthritis. Interstitial edema caused by accumulation of hyaluronan may cause dysfunction in various organs.  相似文献   

9.
Hyaluronan is a megadalton glycosaminoglycan composed of repeating units of D-N-acetylglucosamine-beta-D-Glucuronic acid. It is known to form a highly hydrated pericellular coat around chondrocytes, fibrosarcoma, and smooth muscle cells. Using environmental scanning electron microscopy we detected fully hydrated hyaluronan pericellular coats around rat chondrocytes (RCJ-P) and epithelial cells (A6). Hyaluronan mediates early adhesion of both chondrocytes and A6 cells to glass surfaces. We show that chondrocytes in suspension establish early "soft contacts" with the substrate through a thick, hyaluronidase-sensitive coat (4.4 +/- 0.7 microm). Freshly-attached cells drift under shear stress, leaving hyaluronan "footprints" on the surface. This suggests that chondrocytes are surrounded by a multilayer of entangled hyaluronan molecules. In contrast, A6 cells have a 2.2 +/- 0.4- microm-thick hyaluronidase-sensitive coat, do not drift under shear stress, and remain firmly anchored to the surface. We consider the possibility that in A6 cells single hyaluronan molecules, spanning the whole thickness of the pericellular coat, mediate these tight contacts.  相似文献   

10.
CD44, a cell-surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, can mediate leukocyte rolling on hyaluronan substrates and has been implicated in leukocyte migration to sites of inflammation. CD44-mediated binding to hyaluronan is of low affinity, and effective cell/matrix interaction depends on multiple interactions with the multivalent ligand. We replaced the Link module of CD44 with the homologous region of TSG-6, a hyaluronan-binding protein secreted in response to inflammation whose Link module has a higher affinity for ligand. Monoclonal antibodies raised against the CD44/TSG-6 chimera recognized recombinant human TSG-6 and native mouse TSG-6 and blocked hyaluronan binding to these proteins. Cells expressing the CD44/TSG-6 molecule bound hyaluronan with higher avidity than cells expressing CD44. This resulted in changes in the hyaluronan binding properties characteristic of cells expressing CD44 such as requirements for threshold levels of receptor expression and for hyaluronan of high molecular mass. In parallel plate flow assays used to model leukocyte rolling, cells expressing CD44/TSG-6 failed to roll on hyaluronan. Instead, they stuck and remained "tethered" to the substrate under fluid flow. This result argues that the low affinity of CD44 for its ligand is important for rolling, an early phase of leukocyte extravasation from the blood.  相似文献   

11.
The contribution of hyaluronan-dependent pericellular matrix to TGF-β1-driven induction and maintenance of myofibroblasts is not understood. Hyaluronan is an extracellular matrix (ECM) glycosaminoglycan important in cell adhesion, proliferation and migration, and is implicated in myofibroblast formation and maintenance. Reduced turnover of hyaluronan has been linked to differentiation of myofibroblasts and potentiation of lung fibrosis. Fibronectin is a fibril forming adhesive glycoprotein that is also upregulated following induction with TGF-β1. Although they are known to bind each other, the interplay between hyaluronan and fibronectin in the pericellular matrix during myofibroblast induction and matrix assembly is not clear. This study addresses the role of hyaluronan and its interaction with fibrillar matrix components during myofibroblast formation. Hyaluronan and fibronectin were increased and co-localized in the ECM following myofibroblast induction by TGF-β1. Inhibition of hyaluronan synthesis in TGF-β1-induced lung myofibroblasts over a 4 day period with 4-methyl umbelliferone (4-MU) further enhanced myofibroblast morphology, caused increased deposition of fibronectin and type I collagen in the ECM, and increased expression of alpha-smooth muscle actin and hyaluronan synthase 2 (HAS2) mRNA. Hyaluronan oligosaccharides or hyaluronidase treatment, which more effectively disrupted the pericellular matrix, had similar effects. CD44 and β1 integrins co-localized in the cell membrane and along some stress fibers. However, CD44 and hyaluronan were specifically excluded from focal adhesions, and associated primarily with cortical actin. Time-lapse imaging of the immediate effects of hyaluronidase digestion showed that hyaluronan matrix primarily mediates attachment of membrane and cortical actin between focal contacts, suggesting that surface adhesion through hyaluronan and CD44 is distinct from focal adhesion through β1 integrins and fibronectin. Fluorescein-labeled hyaluronan bound regularly along fibronectin fibers and co-localized more with β1 integrin and less with CD44. Therefore, the hyaluronan matrix can interfere with the assembly of fibrillar ECM components, and this interplay regulates the degree of myofibroblast formation. These data also suggest that adhesion through hyaluronan matrix impacts cytoskeletal organization, and is potentially part of a clutch mechanism that regulates stick and slip of myofibroblasts by affecting the adhesion to and organization of fibronectin and collagen.  相似文献   

12.
Interactions between cell-surface adhesion receptors and immobilized specific substrata can exert profound effects on cell morphology. Using phase-contrast microscopy, we show that CD44-expressing mouse lymphoid cells display a spread morphology when adhering to CD44-specific monoclonal antibody (mAb) immobilized on plastic. This spread morphology is different from that of these same cells when adhering to immobilized hyaluronan, the natural ligand of CD44. Morphometric measurements, in combination with intracellular actin staining and fluorescence microscopy, revealed that the adhesion of lymphoid cells to hyaluronan required essentially no cytoskeletal reorganization and resulted in no fundamental change in morphology. On the other hand, cells adhering to immobilized CD44-specific mAb rearranged their actin structure and established multiple membrane contact sites (spread). Cell spreading on antibody, but not attachment to hyaluronan, was inhibited by cytoskeleton-disrupting agents. Transfection of CD44-negative lymphoid cells with full-length and tailless CD44 enabled these cells to bind to both immobilized hyaluronan and mAb. However, the transfectant lacking the cytoplasmic tail of CD44 spread only transiently on the antibody-coated surface. Our results suggest that CD44 may mediate lymphocyte attachment to its carbohydrate ligand hyaluronan by mechanisms broadly similar to those used by selectins. When immobilized CD44-specific antibody is the ligand, however, CD44 may regulate the activity of the cytoskeleton by mechanisms broadly similar to those used by integrins. In the latter case, the cytoplasmic domain of CD44 contributes to cell spreading.  相似文献   

13.
The melanoma cell adhesion molecule (MCAM)/CD146 is expressed as two isoforms differing by their cytoplasmic domain (MCAM long (MCAM-l) and MCAM short (MCAM-s)). MCAM being expressed by endothelial cells and activated T cells, we analyzed its involvement in lymphocyte trafficking. The NK cell line NKL1 was transfected by MCAM isoforms and submitted to adhesion on both the endothelial cell monolayer and recombinant molecules under shear stress. MCAM-l transfection reduced rolling velocity and increased NKL1 adhesion on the endothelial cell monolayer and VCAM-1. Scanning electron microscopy revealed that MCAM-l induced microvilli formation and extension. In contrast, MCAM short or mock transfection had no effect on adhesion of NKL1 cells and microvilli formation. As shown by mutagenesis, serine 32 of the MCAM-l cytoplasmic tail, belonging to a putative protein kinase C phosphorylation site, was necessary for MCAM-l-actin cytoskeleton interaction and microvilli induction. Accordingly, chelerythrine chloride, a protein kinase C inhibitor, abolished MCAM-l-induced microvilli and rolling of MCAM-l-transfected NKL1 cells. Inhibition of adhesion under shear stress by anti-MCAM Abs suggested that both lymphoid MCAM-l and endothelial MCAM were also directly involved in lymphocyte endothelium interaction. MCAM-l-transfected NKL1 and activated CD4 T cells adhered to rMCAM under shear stress whereas anti-MCAM Ab treatment inhibited this process. Taken together, these data establish that MCAM is involved in the initial steps of lymphocyte endothelium interaction. By promoting the rolling on the inflammation marker VCAM-1 via microvilli induction and displaying adhesion receptor activity involving possible homophilic MCAM-l-MCAM-l interactions, MCAM might be involved in the recruitment of activated T cells to inflammation sites.  相似文献   

14.
Proinflammatory cytokines such as TNF-alpha up-regulate the expression of the cell adhesion molecule, CD44, and induce hyaluronan (HA) binding in peripheral blood monocytes (PBM). Here we show that in PBM, TNF-alpha induced cytoskeletal rearrangement, increased threonine phosphorylation of ERM proteins, and induced the redistribution and colocalization of phospho-ERM proteins (P-ERM) with CD44. In the myeloid progenitor cell line, KG1a, hyaluronan binding occurred in the pseudopod where CD44, P-ERM, and F-actin were highly localized. Hyaluronan binding correlated with high expression of both CD44 and P-ERM clustered in a single pseudopod. Disruption of polymerized actin reduced hyaluronan binding in both PBM and KG1a cells and abolished CD44 clustering and the pseudopod in KG1a cells. The pseudopod was not required for the clustering of CD44, the colocalization with P-ERM, or hyaluronan binding. However, treatment with a kinase inhibitor abolished ERM phosphorylation and reduced hyaluronan binding. Furthermore, expression of CD44 lacking the putative ERM binding site resulted in reduced hyaluronan binding. Taken together, these data suggest that CD44-mediated hyaluronan binding in human myeloid cells is regulated by P-ERM and the actin cytoskeleton.  相似文献   

15.
Lymphocyte rolling velocity is determined largely by interactions between leukocyte alpha(4)-integrin (CD49d) and L-selectin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in mesenteric postcapillary venules and Peyer's patch high endothelial venules (HEVs). The role of these interactions in other tissue sites of lymphocyte emigration is not known. With the use of real-time intravital confocal microscopy, we found that rolling velocities of T lymphocytes in the murine mesenteric lymph node (MLN) HEV also depend on L-selectin and CD49d. However, in the murine spleen, rolling velocities of T lymphocytes are not influenced by the loss of L-selectin and CD49d. With the use of FITC-dextran and TIE2-GFP mice, we further defined the microvascular compartments of the spleen and showed that adherence of T cells is localized to regions in the white pulp that are not lined by endothelial cells and have shear rates similar to bone marrow sinusoids. These results establish that T cell trafficking to the spleen differs from trafficking to other secondary lymphoid organs and suggest that the mechanical properties of the blood-filtering role of the spleen are important in T cell accumulation in the organ.  相似文献   

16.
Tissue-specific heterogeneity of endothelial cells, both structural and functional, plays a crucial role in physiologic as well as pathologic processes, including inflammation, autoimmune diseases and tumor metastasis. This heterogeneity primarily results from the differential expression of adhesion molecules that are involved in the interactions between endothelium and circulating immune cells or disseminating tumor cells. Among these molecules present on endothelial cells is hyaluronan (HA), a glycosaminoglycan that contributes to primary (rolling) interactions through binding to its main receptor CD44 expressed on leukocytes and tumor cells. While the regulation of CD44 expression and function on either leukocytes or tumor cells has been well characterized, much less is known about the ability of endothelial cells to express HA on their surface. Therefore, in these studies we analyzed HA levels on tissue-specific endothelium. We used endothelial cell lines of different origin, including lung, skin, gut and lymph nodes that had been established previously as model lines to study interactions between the endothelium and leukocytes/tumor cells. Our results indicate that HA is accumulated on the surface of all endothelial cells examined. Moreover, retention of endogenous HA differs between the lines and may depend on their tissue origin. Analysis of binding of exogenous HA reveals the presence of specific HA binding sites on all endothelial cell lines tested. However, the retention of endogenous HA and the binding of exogenous HA is mediated through a CD44-independent mechanism.  相似文献   

17.
Chemokines arrest circulating lymphocytes within the vasculature through the rapid up-regulation of leukocyte integrin adhesive activity, promoting subsequent lymphocyte transmigration. However, the key regulatory molecules regulating this process have remained elusive. Here, we demonstrate that Rap1 plays a pivotal role in chemokine-induced integrin activation and migration. Rap1 was activated by secondary lymphoid tissue chemokine (SLC; CCL21) and stromal-derived factor 1 (CXCL4) treatment in lymphocytes within seconds. Inhibition of Rap1 by Spa1, a Rap1-specific GTPase-activating protein, abrogated chemokine-stimulated lymphocyte rapid adhesion to endothelial cells under flow via intercellular adhesion molecule 1. Expression of a dominant active Rap1V12 in lymphocytes stimulated shear-resistant adhesion, robust cell migration on immobilized intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, and transendothelial migration under flow. We also demonstrated that Rap1V12 expression in lymphocytes induced a polarized morphology, accompanied by the redistribution of CXCR4 and CD44 to the leading edge and uropod, respectively. Spa1 effectively suppressed this polarization after SLC treatment. This unique characteristic of Rap1 may control chemokine-induced lymphocyte extravasation.  相似文献   

18.
Internalization of the Hyaluronan Receptor CD44 by Chondrocytes   总被引:1,自引:0,他引:1  
Chondrocytes express CD44 as a primary receptor for the matrix macromolecule hyaluronan. Hyaluronan is responsible for the retention and organization of proteoglycan within cartilage, and hyaluronan-chondrocyte interactions are important for the assembly and maintenance of the cartilage matrix. Bovine articular chondrocytes were used to study the endocytosis and turnover of CD44 and the effects of receptor occupancy on this turnover. Matrix-intact chondrocytes exhibit approximately a 6% internalization of cell surface CD44 by 4 h. Treatment with Streptomyces hyaluronidase to remove endogenous pericellular matrix increased internalization to approximately 20% of cell surface CD44 at 4 h. This turnover could be partially inhibited by the addition of exogenous hyaluronan to these matrix-depleted chondrocytes. Cell surface biotin-labeled CD44 was internalized by chondrocytes and this internalization was decreased in the presence of hyaluronan. Colocalization of internalized CD44 and fluorescein-labeled hyaluronan in intracellular vesicles correlates with the previous results of receptor-mediated endocytosis pathway for the degradation of hyaluronan by acid hydrolases. Taken together, our results indicate that CD44 is internalized by chondrocytes and that CD44 turnover is modulated by occupancy with hyaluronan.  相似文献   

19.
CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12-37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells.  相似文献   

20.
The hyaluronan receptor belongs to the polymorphic family of CD44 glycoproteins, which have been implicated in a variety of cellular functions including adhesion to hyaluronan and collagen, the binding of lymphocytes to high endothelial cells during extravasation, and conferring metastatic potential to carcinoma cells. Here, we demonstrate that the receptor also participates in the uptake and degradation of hyaluronan by both transformed fibroblasts (SV-3T3 cells) and alveolar macrophages. These cells were incubated with isotopically labeled hyaluronan for various periods of time, and the extent of degradation was determined by either molecular-sieve chromatography or centrifugation through Centricon 30 microconcentrators. The macrophages degraded the hyaluronan at a faster rate than the SV-3T3 cells, which may reflect the fact that they contained a greater number of receptors. More importantly, in both cell types, the degradation of hyaluronan was specifically blocked by antibodies directed against the receptor. However, the receptor by itself did not have the ability to degrade hyaluronan, since preparations of SV-3T3 membranes containing the receptor did not break down hyaluronan. Subsequent experiments revealed that macrophages can internalize fluorescein-tagged hyaluronan, and this process was blocked by antibodies against the receptor. Furthermore, the subsequent degradation of hyaluronan was inhibited by agents that block the acidification of lysosomes (chloroquine and NH4Cl). Thus, the most likely explanation for these results is that the receptor mediates the uptake of hyaluronan into the cell where it can be degraded by acid hydrolases in lysosomes. The ability of cells expressing the receptor to degrade hyaluronan may be important during tissue morphogenesis and cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号