首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Collagenase-1 is a protease expressed by active fibroblasts that is involved in remodeling of the extracellular matrix (ECM). In this study, we characterize the intracellular signaling mechanism of collagenase-1 production by IL-1alpha in subcultured normal fibroblasts (NF) from uninjured normal corneas, compared to that in repair wound fibroblasts (WF). In NF, collagenase-1 was induced specifically after the exogenous addition of IL-1alpha via activation of ERK and p38MAPK. Collagenase-1 expression was strongly suppressed upon treatment with either a MEK or p38MAPK inhibitor. In contrast, repair WF constitutively synthesized both IL-1alpha and collagenase-1. Combined treatment with both mitogen-activated protein kinase (MAPK) inhibitors dramatically reduced collagenase-1 synthesis, while individual MEK1 or p38 inhibitors weakly modulated the collagenase-1 level. The results indicate that both pathways are crucial in the regulation of collagenase-1 synthesis. Furthermore, an IL-1alpha receptor antagonist (IL-1ra) could not abolish constitutive collagenase-1 synthesis, even at high doses, suggesting that other cytokines/factors are additionally involved in this process. We propose that induction of collagenase-1 by IL-1alpha in both WF and NF depends on a unique combination of cell type-specific signaling pathways.  相似文献   

3.
Collagenase-3 (matrix metalloproteinase-13) is a metalloproteinase (MMP) that is associated with bone lesions and exhibits variable expression patterns in odontogenic cysts; it may play a role in regulating focal proliferation and maturation of jaw cyst epithelium. We studied the localization, staining intensity and distribution of collagenase-3 in 13 periapical granulomas with epithelium, 16 periapical granulomas without epithelium and 10 radicular cysts using archived formalin fixed, paraffin embedded tissues. A monoclonal antibody against human collagenase-3 was used to evaluate its expression. Immunohistochemical staining intensities of collagenase-3 in all periapical lesions were (?), 4 (10%); (+), 1 (3%); (++), 22 (56%) and (+++), 12 (31%); differences were not statistically significant. Immunohistochemical distribution of collagenase-3 in epithelial cells was (?), 17 (44%); (+), 17 (44%); (++), 5 (13%); in fibroblasts it was (?), 8 (20%); (+), 23 (59%); (++), 8 (21%); in plasma cells it was (?), 7 (18%); (+), 22 (56%); (++), 10 (26%); in macrophages it was (?), 7 (18%); (+), and 15 (38%); and (++), 17 (44%). Statistically significant differences were found in epithelial cells (p = 0.00) and fibroblasts (p = 0.02), whereas differences were not statistically significant for plasma cells and macrophages. Collagenase-3 may play a role in the conversion of a periapical granuloma with epithelium to radicular cyst. MMP's influence not only epithelial rest cell migration, but also invasion of various stromal cells into granulomatous tissue.  相似文献   

4.
Fibroblast proliferation and extracellular matrix accumulation characterize idiopathic pulmonary fibrosis (IPF). We evaluated the presence of tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, and -4; collagenase-1, -2, and -3; gelatinases A and B; and membrane type 1 matrix metalloproteinase (MMP) in 12 IPF and 6 control lungs. TIMP-1 was found in interstitial macrophages and TIMP-2 in fibroblast foci. TIMP-3 revealed an intense staining mainly decorating the elastic lamina in vessels. TIMP-4 was expressed in IPF lungs by epithelial and plasma cells. TIMP-2 colocalized with Ki67 in fibroblasts, whereas TIMP-3 colocalized with p27 in inflammatory and epithelial cells. Collagenase-1 was localized in macrophages and alveolar epithelial cells, collagenase-2 was localized in a few neutrophils, and collagenase-3 was not detected. MMP-9 was found in neutrophils and subepithelial myofibroblasts. Myofibroblast expression of MMP-9 was corroborated in vitro by RT-PCR. MMP-2 was noticed in myofibroblasts, some of them close to areas of basement membrane disruption, and membrane type 1 MMP was noticed in interstitial macrophages. These findings suggest that in IPF there is higher expression of TIMPs compared with collagenases, supporting the hypothesis that a nondegrading fibrillar collagen microenvironment is prevailing.  相似文献   

5.
Collagenase-3 expression in osteoblastic (UMR 106-01, ROS 17/2.8) and non-osteoblastic cell lines (BC1, NIH3T3) was examined. We observed that parathyroid hormone (PTH) induces collagenase-3 expression only in UMR cells but not in BC1 (which express collagenase-3 constitutively) or ROS and NIH3T3 cells. Since we know from UMR cells that the AP-1 factors and Cbfa1 are required for collagenase-3 expression, we analyzed the expression and PTH regulation of these factors by gel shift and Northern blot analysis in all cell lines. Gel mobility shift with a [(32)P]-labeled collagenase-3 AP-1 site probe indicated the induction of c-Fos in osteoblastic cells upon PTH treatment. While c-fos was induced in UMR cells, both c-fos and jun B were induced in ROS cells. Since Jun B is inhibitory of Fos and Jun in the regulation of the rat collagenase-3 gene in UMR cells, it is likely that high levels of Jun B prevent PTH stimulation of collagenase-3 in ROS cells. When we carried out gel shift analysis with a [(32)P]-labeled collagenase-3 RD (runt domain) site probe and Northern blot analysis with a Cbfa1 specific probe, we have observed the presence of Cbfa1 in both osteoblastic and non-osteoblastic cell lines, but there was no change in the levels of Cbfa1 RNA or protein in these cells under either control conditions or PTH treatment. From our studies above, it is evident that the expression of collagenase-3 and its regulation by PTH in osteoblastic and non-osteoblastic cells may be influenced by differential temporal stimulation of the AP-1 family members, especially c-Fos and Jun B along with the potential for posttranslational modification(s) of Cbfa1.  相似文献   

6.
7.
In response to cutaneous injury, expression of collagenase-1 is induced in keratinocytes via alpha2beta1 contact with native type I collagen, and enzyme activity is essential for cell migration over this substratum. However, the cellular mechanism(s) mediating integrin signaling remain poorly understood. We demonstrate here that treatment of keratinocytes cultured on type I collagen with epidermal growth factor receptor (EGFR) blocking antibodies or a specific receptor antagonist inhibited cell migration across type I collagen and the matrix-directed stimulation of collagenase-1 production. Additionally, stimulation of collagenase-1 expression by hepatocyte growth factor, transforming growth factor-beta1, and interferon-gamma was blocked by EGFR inhibitors, suggesting a required EGFR autocrine signaling step for enzyme expression. Collagenase-1 mRNA was not detectable in keratinocytes isolated immediately from normal skin, but increased progressively following 2 h of contact with collagen. In contrast, EGFR mRNA was expressed at high steady-state levels in keratinocytes isolated immediately from intact skin but was absent following 2 h cell contact with collagen, suggesting down-regulation following receptor activation. Indeed, tyrosine phosphorylation of the EGFR was evident as early as 10 min following cell contact with collagen. Treatment of keratinocytes cultured on collagen with EGFR antagonist or heparin-binding (HB)-EGF neutralizing antibodies dramatically inhibited the sustained expression (6-24 h) of collagenase-1 mRNA, whereas initial induction by collagen alone (2 h) was unaffected. Finally, expression of collagenase-1 in ex vivo wounded skin and re-epithelialization of partial thickness porcine burn wounds was blocked following treatment with EGFR inhibitors. These results demonstrate that keratinocyte contact with type I collagen is sufficient to induce collagenase-1 expression, whereas sustained enzyme production requires autocrine EGFR activation by HB-EGF as an obligatory intermediate step, thereby maintaining collagenase-1-dependent migration during the re-epithelialization of epidermal wounds.  相似文献   

8.
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast.  相似文献   

9.
10.
11.
During melanoma progression, migrating cells must cross human dermis, a type I collagen-rich tissue. We have show that MMP-1 and MMP-2 act in a cumulative manner in the in vitro invasion of a three-dimensional type I collagen matrix by melanoma cells. Two melanoma cell lines (M1Dor and M3Da) previously reported to secrete proMMP-2 in a direct relationship with their tumorigenic potential into nude mice were used (F. Capon et al., 1999, Clin. Exp. Metastasis 17, 463-469). The highly tumorigenic cell line (M3Da) displayed a five-fold faster migration rate in type I collagen matrix, compared to its lower tumorigenic counterpart (M1Dor). In parallel, activation of proMMP-2 was evidenced in M3Da- but not M1Dor-populated collagen lattices. Such enzyme activation was associated with a significant decrease in TIMP-2 and TIMP-1 production. Agents known to interfere with proMMP-2 activation, i.e., excess TIMP-2, furin convertase inhibitor, and alphavbeta3 blocking antibody, reduced by 30-40% the type I collagen invasive capacity of M3Da cells. By comparison, batimastat, a wide-spectrum MMP inhibitor, exhibited a more pronounced inhibitory effect (>70%). It suggested that other collagenases than MMP-2 could participate in type I collagen invasion. Collagenase-3 (MMP-13) was produced at low levels by melanoma cells whatever the cell culture conditions. In contrast, M3Da and M1Dor cells secreted collagenase-1 (MMP-1) following 48 h of culture on plastic dishes. Growing melanoma cells in type I collagen gel did not modify enzyme production, but induced proMMP-1 activation in M3Da but not M1Dor cell-populated lattices. Blocking the plasmin-mediated proMMP-1 activation by aprotinin inhibited type I collagen gel invasion by 30%. Since the combination of aprotinin and furin convertase inhibitor reduced collagen invasiveness by melanoma cells to a level comparable to that attained with batimastat, we conclude that both MMP-2 and MMP-1 are involved in such tissue invasion.  相似文献   

12.
13.
The matrix metalloproteinases are crucial in the physiological and pathological degradation of the mammalian extracellular matrix, including breast tumours, and osteoarthritic cartilage. These enzymes are classified according to their matrix substrate specificity. Collagenase-3 (MMP-13) is a member of this family and preferentially cleaves type II collagen, cartilage, fibronectin and aggrecan. Collagenase-3 is normally expressed in hypertrophic chondrocytes, periosteal cells, and osteoblasts during bone development. The structure of the catalytic domain of recombinant mouse collagenase-3, complexed to the hydroxamate inhibitor (RS-113456), is reported at 2.0 A resolution. Molecular replacement and weak phasing information from a single derivative determined the structure. Neither molecular replacement nor derivative methods had a sufficient radius of convergence to yield a refinable structure. The structure illuminates the atomic zinc ion interactions with functional groups in the active site, emphasizing zinc ligation and the very voluminous hydrophobic P1' group for the inhibitor potency. The structure provides insight into the specificity of this enzyme, facilitating design of specific inhibitors to target various diseases.  相似文献   

14.
15.
The role of various matrix metalloproteinases (MMP)—such as gelatinases, stromelysins, matrilysin, collagenase-3, and membrane-bound MMP (MB-MMP)—in tumor invasion and metastasis is discussed. Data suggesting significance for malignant growth of the expression level of these enzymes and also of their activators and inhibitors are presented. It is concluded that at different stages of tumor progression the activity of different MMPs is displayed, which is regulated by various growth factors and oncogenes. Different malignancies are characterized by changes in activities of specific MMPs. Data are presented which show significance of the ratio between the MMP activity and that of tissue inhibitors of metalloproteinases (TIMP) in tumor invasion and metastasis, especially in connection with a dual role of TIMP as both MMP inhibitors and activators.  相似文献   

16.
The growth of synovial fibroblast-like cells from patients with rheumatoid arthritis and rats with streptococcal cell wall (SCW)-induced arthritis in vitro under anchorage-independent conditions is inhibited by transforming growth factor-beta (TGF-beta). Because this growth factor is present in rheumatoid synovial fluids, we studied whether this cytokine might be secreted by cells in rheumatoid synovial tissue. We show that synovial tissues from patients with rheumatoid arthritis and osteoarthritis, and rats with SCW-induced arthritis, contain TGF-beta-1 mRNA. TGF-beta, predominantly type 1, was spontaneously secreted in vitro by synovial tissue explants and synovial fibroblast-like cells. In addition, TGF-beta could be detected immunohistochemically in cells throughout rheumatoid and SCW-induced arthritic rat synovial tissues. Finally, exogenous TGF-beta induced collagen and inhibited collagenase mRNA levels by cultured synoviocytes. These data support an autocrine role for TGF-beta in the regulation of synoviocytes in rheumatoid arthritis and, in light of its demonstrated effects on the immune system, suggest that TGF-beta might also have important paracrine effects on infiltrating inflammatory cells.  相似文献   

17.
During lung injury, fibroblasts migrate into the alveolar spaces where they can be exposed to pulmonary surfactant. We examined the effects of Survanta and surfactant protein A (SP-A) on fibroblast growth and apoptosis and on type I collagen, collagenase-1, and tissue inhibitor of metalloproteinase (TIMP)-1 expression. Lung fibroblasts were treated with 100, 500, and 1,000 microg/ml of Survanta; 10, 50, and 100 microg/ml of SP-A; and 500 microg/ml of Survanta plus 50 microg/ml of SP-A. Growth rate was evaluated by a formazan-based chromogenic assay, apoptosis was evaluated by DNA end labeling and ELISA, and collagen, collagenase-1, and TIMP-1 were evaluated by Northern blotting. Survanta provoked fibroblast apoptosis, induced collagenase-1 expression, and decreased type I collagen affecting mRNA stability approximately 10-fold as assessed with the use of actinomycin D. Collagen synthesis and collagenase activity paralleled the gene expression results. SP-A increased collagen expression approximately 2-fold and had no effect on collagenase-1, TIMP-1, or growth rate. When fibroblasts were exposed to a combination of Survanta plus SP-A, the effects of Survanta were partially reversed. These findings suggest that surfactant lipids may protect against intraluminal fibrogenesis by inducing fibroblast apoptosis and decreasing collagen accumulation.  相似文献   

18.
19.
Matrix metalloproteinases (MMPs) are a family of secreted or transmembrane proteins that have been implicated in multiple physiological and pathological processes related to extracellular matrix turnover. Recent evidence strongly suggests a role for collagenase-3 (MMP-13) in tumor metastasis and invasion. We report here that collagenase-3 is constitutively expressed in the breast cancer cell line MDA-MB231 (MDA) and outline the molecular mechanism regulating its expression. Functional analysis of the collagenase-3 promoter showed that both the activator protein-1 (AP-1) site and the runt domain (RD) binding site were required for maximal constitutive expression of collagenase-3 in MDA cells. Determination of factors binding to those sites by Northern analysis and transient transfections identified the requirement of Fra-1, c-Jun, and Cbfa1 for basal collagenase-3 promoter activity in MDA cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号