首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of infection structures by the directly infecting soybean rust fungus of different artificial membranes was followed by light and scanning electron microscopy. On water agar uredospores developed germ tubes without appressoria. On dialysis membranes more than 80% of the uredospores formed appressoria. With low frequencies (1–7%) also primary hyphae and/or penetration hyphae were present. When cellulose nitrate membrane filters with pore diameters ≤ 0.2 μm were used, uredospores germinated but showed a strongly reduced appressoria formation. Membranes with pores ≥ 0.1 μm allowed a development of infection structures similar to that on dialysis membranes. In experiments with paraffin oil incorporated into collodion membranes more than 90% of the uredospores formed appressoria, about 50% of the appressoria developed hyphae. Ungerminated spores and germ tubes always contained 2 nuclei. In fully developed appressoria 4 nuclei were present. Compared with stomata entering rust fungi appressoria formation by Phakopsora pachyrhizi occurred more frequently and seemed to be less dependent on specific stimuli. Moreover, in most cases only few of the appressoria formed penetration or primary hyphae. The induction of these structures seemed to be dependent on further unknown stimuli.  相似文献   

2.
Summary The formation of cell walls during the appressorium formation inColletotrichum lagenarium was observed by electron microscope on the materials prepared by replicas and sectioning. The outer layer of conidia cell walls ruptured at the time of germination and the inner layer bulged out to form a germ tube. The germ tubes and primordia of appressoria had smooth surface and were consisted of one-layered cell wall. However, as the appressorium matured, the electron dense materials appeared on the outer surface of the cell wall which grew into granules. These granules are believed to form the outer layer of appressoria. The under side of the appressorium in contact with the glass surface showed a round pore.Contribution No. 191.  相似文献   

3.
As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co‐regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin‐dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi‐nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild‐type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium‐delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium‐like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium‐like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase.  相似文献   

4.
Using a green fluorescent protein (GFP)-tubulin fusion protein, we have investigated the dynamic rearrangement of microtubules during appressorium formation of Colletotrichum lagenarium. Two alpha-tubulin genes of C. lagenarium were isolated, and GFP-alpha-tubulin protein was expressed in this fungus. The strain expressing the fusion protein formed fluorescent filaments that were disrupted by a microtubule-depolymerizing drug, benomyl, demonstrating successful visualization of microtubules. In preincubated conidia, GFP-labeled interphase microtubules, showing random orientation, were observed. At conidial germination, microtubules oriented toward a germination site. At nuclear division, when germ tubes had formed appressoria, mitotic spindles appeared inside conidia followed by disassembly of interphase microtubules. Remarkably, time-lapse views showed that interphase microtubules contact a microtubule-associated center at the cell cortex of conidia that is different from a nuclear spindle pole body (SPB) before their disassembly. Duplicated nuclear SPBs separately moved toward conidium and appressorium accompanied by astral microtubule formation. Benomyl treatment caused movement of both daughter nuclei into 70% of appressoria and affected appressorium morphogenesis. In conidia elongating hyphae without appressoria, microtubules showed polar elongation which is distinct from their random orientation inside appressoria.  相似文献   

5.
Summary The sites alongUromyces appendiculatus germ tubes that are responsive to topographical induction for appressorium formation were determined using glass micropipettes. The germ tubes were perturbed with the micropipettes at different sites and durations. The most responsive region of the germ tubes for appressorium formation was within 0–10 m from the cell apex where >90% of the perturbed germ tubes developed appressoria. Furthermore, only the cell surface in contact with the substratum was responsive. Appressoria could not be induced to form, under any conditions, by perturbing cell-substratum regions of the germ tubes more than 40 m from the apex. Maximum appressorium formation occurred when the perturbing micropipette was left in place for >20 min.  相似文献   

6.
7.
Kelch repeat proteins are important mediators of fundamental cellular functions and are found in diverse organisms. However, the roles of these proteins in filamentous fungi have not been characterized. We isolated a kelch repeat-encoding gene of Colletotrichum lagenarium ClaKEL2, a Schizosaccharomyces pombe tea1 homologue. Analysis of the clakel2 mutant indicated that ClaKEL2 was required for the establishment of cellular polarity essential for proper morphogenesis of appressoria and that there is a plant signal-specific bypass pathway for appressorium development which circumvents ClaKEL2 function. Clakel2p was localized in the polarized region of growing hyphae and germ tubes, and the localization was disturbed by a microtubule assembly blocker. The clakel2 mutants formed abnormal appressoria, and those appressoria were defective in penetration hypha development into cellulose membranes, an artificial model substrate for fungal infection. Surprisingly, the clakel2 mutants formed normal appressoria on the host plant and retained penetration ability. Normal appressorium formation on the artificial substrate by the clakel2 mutants was restored when cells were incubated in the presence of CaCl2 or exudates from cucumber cotyledon. Furthermore, calcium channel modulators inhibited restoration of normal appressorium formation. These results suggest that there could be a bypass pathway that transduces a plant-derived signal for appressorium development independent of ClaKEL2 and that a calcium signal is involved in this transduction pathway.  相似文献   

8.
In the present study, using a high-fidelity digital microscope, we observed the sequence of appressorial development on the germ tubes of a powdery mildew fungus isolated from red clover leaves. Based on its morphological characteristics and rDNA internal transcribed spacer (ITS) sequences, the fungus was identified as Erysiphe trifoliorum, and one of its isolates, designated as KRCP-4N, was used in this work. The conidial germination of isolate KRCP-4N was studied on host (red clover) and non-host (barley) leaves, as well as on an artificial hydrophobic membrane (Parafilm). More than 90% of conidia germinated synchronously and developed dichotomous appressoria (symmetrical double-headed appressoria) on all substrata used. On host leaves, all appressorium-forming conidia developed hyphae (colony-forming hyphae) from conidial bodies without extending germ tubes from the tips of the appressoria. On non-host leaves and on Parafilm-covered glass slides, however, all conidia extended germ tubes from one side of dichotomous appressoria (two-step germination). In addition to the dichotomous appressoria, we detected a few conidia that produced hooked appressoria and extended germ tubes from the tip of the appressorium. Penetration attempts by KRCP-4N conidia on barley leaves were impeded by papillae formed at penetration sites beneath these two types of appressorium. From these results, we conclude that the “two-step germination” of E. trifoliorum KRCP-4N conidia is the result of an unsuccessful penetration attempt, causing diversity in appressorial shape.  相似文献   

9.
Colletotrichum graminicola, like many plant pathogenic fungi develop appressoria on germling apices, to facilitate penetration of their host. Induction of these structures occurs after contact with the host surface has been established by the germling. Surface contact and subsequent development of appressoria by germlings of C. graminicola was assessed using interference-reflection microscopy (IRM) and microfabricated pillared silicon substrata. Observations with IRM revealed that under low nutrient conditions, 90% of the germlings developed appressoria once they established 4.5 microm of continuous contact with the substratum. Substrata bearing pillars < or =5 microm in width supported < or =10% appressoria; however, as pillar width was increased the percentage of appressoria formed increased in a sigmoid fashion to a maximum of 80%. The percentage of appressoria produced experimentally on these surfaces was compared to data sets generated from a model designed to calculate the probability of appressorium development on similar pillar arrays at various germ tube contact lengths. These results indicate that germ tubes of C. graminicola require more than 4microm of continuous contact with a hydrophobic substratum for induction of appressoria.  相似文献   

10.
The first barrier to infection encountered by foliar pathogens is the host cuticle. To traverse this obstacle, many fungi produce specialized infection cells called appressoria. MST12 is essential for appressorium-mediated penetration and infectious growth by the rice pathogen Magnaporthe grisea. In this study, we have characterized in detail the penetration defects of an mst12 deletion mutant. Appressoria formed by the mst12 mutant developed normal turgor pressure and ultrastructure but failed to form penetration pegs either on cellophane membranes or on plant epidermal cells. Deletion and site-directed mutagenesis analyses indicated that both the homeodomain and zinc finger domains, but not the middle region, of MST12 are essential for appressorial penetration and plant infection. The mst12 mutant appeared to be defective in microtubule reorganization associated with penetration peg formation. In mature appressoria, the mutant lacked vertical microtubules observed in the wild type. The mst12 mutant also failed to elicit localized host defence responses, including papilla formation and autofluorescence. Our data indicate that generation of appressorium turgor pressure and formation of the penetration peg are two independent processes. MST12 may play important roles in regulating penetration peg formation and directing the physical forces exerted by the appressorium turgor in mature appressoria.  相似文献   

11.
Colletotrichum lagenarium, the causal agent of cucumber anthracnose, invades host plants by forming a specialized infection structure called an appressorium. In this fungus, the mitogen-activated protein kinase (MAPK) gene CMK1 is involved in several steps of the infection process, including appressorium formation. In this study, the goal was to investigate roles of other MAPKs in C. lagenarium. The MAPK gene MAF1, related to Saccharomyces cerevisiae MPK1 and Magnaporthe grisea MPS1, was isolated and functionally characterized. The maf1 gene replacement mutants grew normally, but there was a significant reduction in conidiation and fungal pathogenicity. The M. grisea mps1 mutant forms appressoria, but conidia of the C. lagenarium maf1 mutants produced elongated germ tubes without appressoria on both host plant and glass, on which the wild type forms appressoria, suggesting that MAF1 has an essential role in appressorium formation on inductive surfaces. On a nutrient agar, wild-type conidia produced elongated germ tubes without appressoria. The morphological phenotype of the wild type on the nutrient agar was similar to that of the maf1 mutants on inductive surfaces, suggesting repression of the MAF1-mediated appressorium differentiation on the nutrient agar. The cmk1 mutants failed to form normal appressoria but produced swollen, appressorium-like structures on inductive surfaces, which is morphologically different from the maf1 mutants. These findings suggest that MAF1 is required for the early differentiation phase of appressorium formation, whereas CMK1 is involved in the maturation of appressoria.  相似文献   

12.
通过DAPI荧光染料染色观察胶孢炭疽菌Colletotrichumgloeosporioides附着胞发育过程中的核相动态变化,结果显示,第2次有丝分裂发生的部位在分生孢子产生芽管的一端中;分裂后,最接近芽管的一个子核移入芽管顶端,或通过芽管移入附着胞中。0.10μg/mL的三环唑可完全抑制附着胞中黑色素形成,但不影响核的分裂。三环唑处理12h后,发生2次有丝分裂数量约为73%,而发生3次有丝分裂的数量约为23.9%;绝大多数附着胞中是单核,双核数量小于5%。  相似文献   

13.
14.
Summary Histochemical and ultrastructural studies were carried out on a wild-type strain (Guyll) and a melanin-deficient mutant(büβ) of the rice-blast pathogen,Magnaporthe grisea (=Pyricularia oryzae), in order to investigate the destination of lipid storage reserves during appressorium development. Lipid droplets were abundant in conidia and were mobilised upon germination, accumulating in the appressorial hook which developed at the tip of each germ tube. Following the formation of a septum at the base of the nascent appressorium, one or a few closely appressed central vacuoles became established and were observed to enlarge in the course of appressorium maturation. On unyielding artificial surfaces such as glass or plastic, appressoria matured to completion within 36–48 h, by which time the enlarged vacuole filled most of the inside volume of the appressorium. Light and transmission electron microscopical observations revealed that the lipid droplets entered the vacuole by autophagocytosis and were degraded therein. Histochemical approaches confirmed the vacuole as the key lytic element in maturing appressoria. Endocytosis of a vital dye, Neutral Red, progressed via endosomes which migrated into the vacuole and lysed there, releasing their dye content into the vacuolar lumen. Furthermore, activity of the lysosomal marker enzyme, acid phospho-monoesterase, was strongly localised in the vacuole at all stages of appressorium maturation. It is therefore envisaged that vacuoles are involved in the degradation of lipid storage reserves which may act as sources of energy and/or osmotically active metabolites such as glycerol, which generate the very high turgor pressure known to be crucial for penetration of hard surfaces. On softer surfaces such as onion epidermis, appressoria ofM. grisea were able to penetrate before degradation of lipid droplets had been completed.  相似文献   

15.
We report on the elucidation of two separate pathways of spore germination in a plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Conidia of the fungus can germinate either from one side or from both sides, depending on external conditions. In shake culture that includes an extract made up from fresh peas, the unicellular conidium divides and one of the two cells develops a germ tube. On a solid surface this germ tube differentiates an appressorium. In rich medium without pea extract, germination is highly similar to Aspergillus spore germination: the conidium swells, forms a single germ tube and then divides and forms a second germ tube. Conidia that germinate in a rich medium do not form appressoria even on a solid surface and are non-pathogenic. In rich medium, cAMP stimulates germination in rich liquid cultures and induces appressoria formation on a hard surface. In pea extract cAMP induces swelling and formation of irregular germ tubes and appressoria. Our results suggest that plant surface signals induce pathogenic-specific spore germination in a cAMP-independent manner. cAMP is required for saprophytic germination and for appressorium formation.  相似文献   

16.
Spores of the arbuscular mycorrhizal fungus, Gigaspora margarita, were placed near the root tip, the middle of the root (equal distance from root base and root tip), or the root base (close to the shoot) of the first primary root of 9-day-old onion. Two weeks later, the number and position of appressoria and the appressoria with penetrating hyphae were determined in the first and the newly formed second primary roots. The total number of appressoria was not significantly different among the treatments. Inoculation near the root tip of the first primary root resulted in the formation of a large number of appressoria on the first primary root and the formation of about three times fewer appressoria on the second primary root. Inoculation near the base of the first primary root resulted in the formation of no appressoria on the first primary root, whereas many appressoria were formed on the second primary root. Our results suggest that the root age is a determinant of the appressorium formation.  相似文献   

17.
Modes of branching of appressoria on conidial germ tubes of 36 Erysiphe spp. were studied. Only unlobed appressoria, termed alobatus pattern, were seen in E. lonicerae, E. magnifica and E. symphoricarpi. Viewed from above with light or scanning electron microscopes, other species had ± irregular lobing, but from below in the plane of contact with the substrate successive dichotomous branchings at 120° were seen to produce a five-lobed appressorium within 6 h. Each division produced a temporarily dormant outward-facing lobe and an inward limb that continued growth and division to form the axis of curved, hooked, single- or double-headed symmetrical or asymmetrical structures in a helicoid cyme-like pattern. Outlines of extracellular material after removal of germinated conidia confirmed this manner of branching. After 36 h some lobes re-divided forming botryose or jigsaw patterns even extending with extra appressoria to form candelabra-like structures. Conidia developed only one true germ tube; rarely secondary unswollen tubes emerged from spare shoulders or ends. The same true germ tubes developed initially on host surfaces, where secondary tubes and/or extensions from appressorial lobes grew into colony-forming hyphae. Lobed appressoria of Neoerysphe and Phyllactinia also branched at 120°. Podosphaera xanthii exhibited a simpler branching pattern.  相似文献   

18.
Abstract Infection by Magnaporthe grisea , the causal agent of rice blast, requires the formation of a melanized, dome-shaped infection cell, called an appressorium. Little is known about the signals and mechanisms regulating this important developmental process. We have previously observed a correlation between hydrophobicity of the contact surface and appressorium formation. To evaluate this thigmotropic response more precisely, we measured appressorium formation on the surfaces of silicon wafers modified to create various degrees of hydrophobicity. We also examined the effects of artificial ridges created on polystyrene surfaces. Hydrophobic surfaces induced a high level of appressorium formation, whereas hydrophilic surfaces did not. Tips of germ-tubes did not respond to ridges of any particular height, but formed appressoria in a random manner. These results indicate that hydrophobicity of the substratum is a primary determinant and is sufficient to induce appressorium formation in M. grisea .  相似文献   

19.
20.
稻温病菌的分生孢子、芽管、附着胞的混合物作为抗原免疫BALB/c小鼠,取免疫小鼠的脾细胞与SP2/0骨髓瘤细胞在50%PEG下融合成杂交瘤细胞,用间接ELISA筛选阳性孔,获11株单克隆抗体。间接免疫荧光试验表明其中4株单克隆抗体2B4、4A1、1D1和2H4分别与孢子、芽管或附着胞有特异性结合;Western blotting分析发现2B4、4A1、1D1单克隆抗体分别与孢子、芽管表面的提取物有不同的结合带;此四株单克隆抗体均干扰稻温病菌附着胞形成,并抑制稻温病菌在叶表的致病性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号