首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Macrostomum lignano (Platyhelminthes) possesses pluripotent stem cells, also called neoblasts, which power its extraordinary regeneration capacity. We have examined the cellular dynamics of neoblasts during regeneration of the rostrum in M. lignano. First, using live squeeze observations, the growth curve of the rostrum was determined. Second, neoblasts were labelled with 5-bromo-2'-deoxyuridine (BrdU) and an anti-phospho-histone H3 mitosis marker (anti-phos-H3) to analyze their proliferative response to amputation. During the regeneration process, both S- and M-phase cells were present anterior to the eyes, a region that is devoid of proliferating cells during homeostasis. Furthermore, BrdU pulse experiments revealed a biphasic S-phase pattern, different from the pattern known to occur during regeneration of the tail plate in M. lignano. During a first systemic phase, S-phase numbers significantly increased, both in the region adjacent to the wound (the anterior segment) and the region far from the wound (the posterior segment). During the second, spatially restricted phase, S-phase numbers in the anterior segment rose to a peak at 3 to 5 days post-amputation (p-a), while in the posterior segment, S-phase activity approached control values again. A blastema, characterized as a build-up of S- and M-phase cells, was formed 1 day p-a.  相似文献   

2.
3.
In certain vertebrates such as the zebrafish, most tissues and organs including the heart and central nervous system possess the remarkable ability to regenerate following severe injury. Both spatial and temporal control of cell proliferation and differentiation is essential for the successful repair and re-growth of damaged tissues. Here, using the regenerating adult zebrafish caudal fin as a model, we have demonstrated an involvement of the circadian clock in timing cell proliferation following injury. Using a BrdU incorporation assay with a short labeling period, we reveal high amplitude daily rhythms in S-phase in the epidermal cell layer of the fin under normal conditions. Peak numbers of S-phase cells occur at the end of the light period while lowest levels are observed at the end of the dark period. Remarkably, immediately following amputation the basal level of epidermal cell proliferation increases significantly with kinetics, depending upon the time of day when the amputation is performed. In sharp contrast, we failed to detect circadian rhythms of S-phase in the highly proliferative mesenchymal cells of the blastema. Subsequently, during the entire period of outgrowth of the new fin, elevated, cycling levels of epidermal cell proliferation persist. Thus, our results point to a preferential role for the circadian clock in the timing of epidermal cell proliferation in response to injury.  相似文献   

4.
We developed a double-label method to directly measure the rate at which cells enter S-phase of the cell cycle. All cells in S-phase were first labeled with a short pulse of [3H]-thymidine. This was followed by a longer incubation in bromodeoxyuridine (BrdU), a thymidine analogue. Nuclei labeled with [3H]-thymidine were detected by autoradiography and those labeled with BrdU by immunocytochemistry. Cells labeled only with BrdU must have entered S-phase at some time after the end of the [3H]-thymidine pulse. Thus, the rate of entry of cells into S-phase could be determined. This method was shown to be more accurate and more sensitive than determining changes in the rate at which cells entered S-phase with a continuous labeling protocol. It was possible to detect changes in proliferative activity that occurred in less than 1 hr. We used this double-label technique to study changes in the cell cycle during the terminal differentiation of chicken embryo lens fiber cells. These studies revealed differences in the effects of several treatments known to stimulate fiber cell differentiation. They also demonstrated the presence in the embryonic eye of factors that stimulate and prevent lens cell proliferation and differentiation.  相似文献   

5.
In Platyhelminthes, totipotent stem cells (neoblasts) are supposed to be the only dividing cells. They are responsible for the renewal of all cell types during development, growth, and regeneration, a unique situation in the animal kingdom. In order to further characterize these cells, we have applied two immunocytochemical markers to detect neoblasts in different stages of the cell cycle in the acoel flatworm Convolutriloba longifissura: (1) the thymidine analog 5'-bromo-2'-deoxyuridine (BrdU) to identify cells in S-phase, and (2) an antibody to phosphorylated histone H3 to locate mitosis. BrdU pulse-chase experiments were carried out to follow differentiation of neoblasts. We demonstrate the differentation into four labeled, differentiated cell types. S-phase cells and mitotic cells showed a homogenous distribution pattern throughout the body of C. longifissura. Two different types of S-phase cells could be distinguished immunocytochemically by their pattern of incorporated BrdU in the nuclei. Transmission electron microscopy was used to study ultrastructural characters of neoblasts and revealed two different stages in maturation of neoblasts, each with a characteristic organization of heterochromatin. The stem-cell pool of C. longifissura is an important prerequisite for the extraordinary mode of asexual reproduction and the high capacity of regeneration. A comparison of the stem-cell pool in Acoela and higher platyhelminth species can provide evidence for the phylogenetic relationships of these taxa.  相似文献   

6.
The remarkable totipotent stem-cell-based regeneration capacities of the Platyhelminthes have brought them into the focus of stem cell and regeneration research. Although selected platyhelminth groups are among the best-studied invertebrates, our data provide new insights into regenerative processes in the most basally branching group of the Platyhelminthes, the Catenulida. The mouth- and gutless free-living catenulid flatworm Paracatenula galateia harbors intracellular bacterial symbionts in its posterior body region, the trophosome region, accounting for up to 50% of the volume. Following decapitation of this flatworm, we have analyzed the behavior of the amputated fragments and any anterior and posterior regeneration. Using an EdU-pulse-chase/BrdU-pulse thymidine analog double-labeling approach combined with immunohistochemistry, we show that neoblasts are the main drivers of the regeneration processes. During anterior (rostrum) regeneration, EdU-pulse-chase-labeled cells aggregate inside the regenerating rostrum, whereas BrdU pulse-labeling before fixation indicates clusters of S-phase neoblasts at the same position. In parallel, serotonergic nerves reorganize and the brain regenerates. In completely regenerated animals, the original condition with S-phase neoblasts being restricted to the body region posterior to the brain is restored. In contrast, no posterior regeneration or growth of the trophosome region in anterior fragments cut a short distance posterior to the brain has been observed. Our data thus reveal interesting aspects of the cellular processes underlying the regeneration of the emerging catenulid-bacteria symbiosis model P. galateia and show that a neoblast stem cell system is indeed a plesiomorphic feature of basal platyhelminths.  相似文献   

7.
Summary During embryogenesis and planula development of the colonial hydroidHydractinia echinata cell proliferation decreases in a distinct spatio-temporal pattern. Arrest in S-phase activity appears first in cells localized at the posterior and then subsequently at the anterior pole of the elongating embryo. These areas do not resume S-phase activity, even during the metamorphosis of the planula larva into the primary polyp. Tissue containing the quiescent cells gives rise to the terminal structures of the polyp. The posterior area of the larva becomes the hypostome and tentacles, while the anterior part of the larva develops into the basal plate and stolon tips. In mature planulae only a very few cells continue to proliferate. These cells are found in the middle part of the larva. Labelling experiments indicate that the prospective material of the postmetamorphic tentacles and stolon tips originates from cells which have exited from the cell cycle in embryogenesis or early in planula development. Precursor cells of the nematocytes which appear in the tentacles of the polyp following metamorphosis appear to have ceased cycling before the 38th hour of embryonic development. The vast majority of the cells that constitute the stolon tips of the primary polyp leave the cell cycle not later than 58 h after the beginning of development. We also report the identification of a cell type which differentiates in the polyp without passing through a post-metamorphic S-phase. The cell type appears to be neural in origin, based upon the identification of a neuropeptide of the FMRFamide type.  相似文献   

8.
Enchytraeus japonensis is a small oligochaete that reproduces mainly asexually by fragmentation (autotomy) and regeneration. As sexual reproduction can also be induced, it is a good animal model for the study of both somatic and germline stem cells. To clarify the features of stem cells in regeneration, we investigated the proliferation and lineage of stem cells in E. japonensis. Neoblasts, which have the morphological characteristics of undifferentiated cells, were found to firmly adhere to the posterior surface of septa in each trunk segment. Also, smaller neoblast‐like cells, which are designated as N‐cells in this study, were located dorsal to the neoblasts on the septa. By conducting 5‐bromo‐2′‐deoxyuridine (BrdU)‐labeling‐experiments, we have shown that neoblasts are slow‐cycling (or quiescent) in intact growing worms, but proliferate rapidly in response to fragmentation. N‐cells proliferate more actively than do neoblasts in intact worms. The results of pulse‐chase experiments indicated that neoblast and N‐cell lineage mesodermal cells that incorporated BrdU early in regeneration migrated toward the autotomized site to form the mesodermal region of the blastema, while the epidermal and intestinal cells also contributed to the blastema locally near the autotomized site. We have also shown that neoblasts have stem cell characteristics by expressing Ej‐vlg2 and by the activity of telomerase during regeneration. Telomerase activity was high in the early stage of regeneration and correlated with the proliferation activity in the neoblast lineage of mesodermal stem cells. Taken together, our results indicate that neoblasts are mesodermal stem cells involved in the regeneration of E. japonensis.  相似文献   

9.
The mouse mutant curly tail (ct) provides a model system for studies of neurulation mechanisms. 60% of ct/ct embryos develop spinal neural tube defects (NTD) as a result of delayed neurulation at the posterior neuropore whereas the remaining 40% of embryos develop normally. In order to investigate the role of cell proliferation during mouse neurulation, cell cycle parameters were studied in curly tail embryos developing spinal NTD and in their normally developing litter-mates. Measurements were made of mitotic index, median length of S-phase and percent reduction of labelling index during a [3H]thymidine pulse-chase experiment. These independent measures of cell proliferation rate indicate a reduced rate of proliferation of gut endoderm and notochord cells in the neuropore region of embryos developing spinal NTD compared with normally developing controls. The incidence of cell death and the relative frequency of mitotic spindle orientations does not differ consistently between normal and abnormal embryos. These results suggest a mechanism of spinal NTD pathogenesis in curly tail embryos based on failure of normal cell proliferation in gut endoderm and notochord.  相似文献   

10.
Synthesis of cyclin in serum-stimulated quiescent 3T3 cells increases shortly before DNA synthesis after 10 h of stimulation, reaching a maximum after 16 h. Inhibition of DNA synthesis by hydroxyurea does not affect the increase of cyclin following stimulation, as determined by quantitative two-dimensional gel electrophoresis. The levels of cyclin decrease dramatically at the end of the S-phase. Cells kept in the presence of hydroxyurea (G1/S boundary) do not show this decrease in cyclin, indicating that its amounts are regulated by events occurring during the S-phase. Immunofluorescence studies of serum-stimulated quiescent cells in the presence of hydroxyurea, using proliferating cell nuclear antigen (PCNA) autoantibodies, confirm the results obtained by protein analysis. They also reveal that there are dramatic changes in the nuclear distribution of cyclin and that these depend on DNA synthesis or events occurring during the S-phase. Cyclin (PCNA) is no longer detectable at the end of the S-phase. However, pulse-chase experiments indicate that this protein is very stable, suggesting that it possibly interacts with other macromolecules rendering it inaccessible to the antibody. These results strengthen the notion that cyclin is an important component of the events leading to DNA replication and cell division.  相似文献   

11.
Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by co-ordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context.  相似文献   

12.
After tail amputation in lizard, a regenerative response is elicited leading to the formation of a new tail. The stimulation of the proliferation process may involve the proto‐oncogene c‐myc. The immunocytochemical analysis detects the c‐myc protein few days after wound in free cells accumulating over the injured tissues of the tail stump. Western blot detects a protein band at 68–70 kDa that is more intense in the regenerating blastema than in normal tail tissues. Nuclei positive for the c‐myc protein are seen in mesenchymal‐like cells located among muscles, connectives and fat tissues of the tail stump 4 days postamputation. Proliferating cells labelled for 5BrdU are seen at 4 days postamputation and are sparse in the mesenchyme of the regenerating blastema formed at 12 days postamputation. Fine immunolocalization of the c‐myc protein shows it is mainly located over euchromatin or poorly condensed chromatin to indicate gene activation. The study correlates the detection of the c‐myc protein with activation of cell division in the injured tissues leading to the formation of the regenerative blastema. The lizard c‐myc protein probably activates a controlled proliferation process through a mechanism that can give information on the uncontrolled process occurring in cancer.  相似文献   

13.
The use of bromodeoxyuridine (BrdU) and subsequent immunocytochemical visualization for studying cell proliferation in plant meristems was investigated in Allium cepa L. root-tips. We describe the optimization of an indirect immunoperoxidase method for detecting incorporation of this DNA precursor in pulse-labeled cells. The basic object of this study is to quantify the extent to which the fraction of S-phase cells can reliably be estimated in asynchronous populations. A matrix of parallel labeling schedules with tritiated-thymidine or BrdU was developed, and the labeling indices provided by autoradiography or immunocytochemistry were compared. Thus, 0.5 mM BrdU assured saturation S-phase labeling after an exposure time of 30 min, and the mean length of the S-phase determined under such conditions was similar to that previously reported for this plant system. Interestingly, Feulgen staining did not interfere with subsequent detection of the BrdU probe. This allowed comparative evaluations of the nuclear DNA content by Feulgenmicrodensitometry and the position of a given cell in G1, S or G2 compartments. We also explored the possibility of quantifying BrdU-incorporation in single nuclei by densitometry measurement of the peroxidase label.  相似文献   

14.
The use of bromodeoxyuridine (BrdU) and subsequent immunocytochemical visualization for studying cell proliferation in plant meristems was investigated in Allium cepa L. root-tips. We describe the optimization of an indirect immunoperoxidase method for detecting incorporation of this DNA precursor in pulse-labeled cells. The basic object of this study is to quantify the extent to which the fraction of S-phase cells can reliably be estimated in asynchronous populations. A matrix of parallel labeling schedules with tritiated-thymidine or BrdU was developed, and the labeling indices provided by autoradiography or immunocytochemistry were compared. Thus, 0.5 mM BrdU assured saturation S-phase labeling after an exposure time of 30 min, and the mean length of the S-phase determined under such conditions was similar to that previously reported for this plant system. Interestingly, Feulgen staining did not interfere with subsequent detection of the BrdU probe. This allowed comparative evaluations of the nuclear DNA content by Feulgenmicrodensitometry and the position of a given cell in G1, S or G2 compartments. We also explored the possibility of quantifying BrdU-incorporation in single nuclei by densitometry measurement of the peroxidase label.  相似文献   

15.
Summary Previous grafting experiments have demonstrated that cells from non-contiguous positions within developing and regenerating limbs differ in a property referred to as positional identity. The goal of this study was to determine how long the positional identity of axolotl limb blastema cells is stable during culture in vitro. We have developed an assay for posterior positional properties such that blastema cells can be cultured and then grafted into anterior positions in host blastemas, to determine if they can stimulate supernumerary digit formation. We report that posterior blastema cells are able to maintain their positional identities for at least a week in culture. In addition, we observed that blastema cells are able to rapidly degrade collagenous substrates in vitro, a property that apparently distinguishes them from limb cells of other vertebrates. These results provide information regarding the time boundaries within which the positional properties of blastema cells can be studied and manipulated in vitro. Correspondence to: S.V. Bryant  相似文献   

16.
Cell cycle kinetics of solid tumors in the past have been restricted to an in vitro labeling index (LI) measurement. Two thymidine analogues, bromodeoxyuridine (BrdU) and iododeoxyuridine (IUdR), can be used to label S-phase cells in vivo because they can be detected in situ by use of monoclonal antibodies (MAb) against BrdU (Br-3) or IUdR (3D9). Patients with a variety of solid tumors (lymphoma, brain, colon cancers) received sequential intravenous IUdR and BrdU. Tumor tissue removed at the end of infusion was embedded in plastic and treated with MAb Br-3 and 3D9 sequentially, using a modification of a previously described method. Clearly single and double labeled cells were visible, which enabled us to determine the duration of S-phase (Ts) and the total cell cycle time (Tc), in addition to the LI in these tumors. Detailed control experiments using tissue culture cell lines as well as bone marrow cells from leukemic patients are described, including the comparison of this double label technique with our previously described BrdU-tritiated thymidine technique. We conclude that the two methods are comparable and that the IUdR/BrdU method permits rapid and reliable cell cycle measurements in solid tumors.  相似文献   

17.
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.  相似文献   

19.
We carried out computer morphometry in regenerates of planarians Dugesia tigrina. The blastema growth was analyzed in fragments of planarians after their fission and after transverse transection at different body levels. The blastema was growing at a higher rate on tail fragments than on the head fragments and the growth rate was the higher, the closer the transection was to the head end. After fission, the blastema was growing at a slower rate than after transection in the fission zone. The growth of adjacent blastemas formed on both sides after fission or transection proceeded at different rates as a function of new body polarity.  相似文献   

20.
We carried out computer morphometry in regenerates of planarians Dugesia tigrina. The blastema growth was analyzed in fragments of planarians after their fission and after transverse transection at different body levels. The blastema was growing at a higher rate on tail fragments than on the head fragments and the growth rate was the higher, the closer the transection was to the head end. After fission, the blastema was growing at a slower rate than after transection in the fission zone. The growth of adjacent blastemas formed on both sides after fission or transection proceeded at different rates as a function of new body polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号