首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for evaluation of fat-soluble vitamin in human adipose tissue with the aim to obtain, accurately and within the shortest analysis time, a time-integrated measure of exposure to vitamins from the diet. Fat tissue was deproteinized with ethanol and extracted with n-hexane. Normal-phase HPLC was performed in a Lichrosorb Si60 column with a gradient of n-hexane–2-propanol at 1 ml/min. Detection was accomplished using a diode-array system (for retinol and β-carotene) in series with a fluorescence detector (α-tocopherol). The method was validated and applied to human adipose tissue in a total of 140 subjects. The mean contents found were 0.43, 0.84, 240.3 μg/g for retinol, β-carotene and α-tocopherol, respectively. The method is sensitive enough for detecting the compounds in 1.6 mg of adipose tissue considering the lowest concentration found.  相似文献   

2.
A simple method for analysis of five local anaesthetics in blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry–electron impact ionization selected ion monitoring (GC–MS–EI-SIM). Deuterated lidocaine (d10-lidocaine) was synthesized and used as a desirable internal standard (I.S.). A vial containing a blood sample, 5 M sodium hydroxide and d10-lidocaine (I.S.) was heated at 120°C. The extraction fiber of the SPME system was exposed for 45 min in the headspace of the vial. The compounds adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC–MS system. The calibration curves showed linearity in the range of 0.1–20 μg/g for lidocaine and mepivacaine, 0.5–20 μg/g for bupivacaine and 1–20 μg/g for prilocaine in blood. No interfering substances were found, and the time for analysis was 65 min for one sample. In addition, this proposed method was applied to a medico–legal case where the cause of death was suspected to be acute local anaesthetics poisoning. Mepivacaine was detected in the left and right heart blood samples of the victim at concentrations of 18.6 and 15.8 μg/g, respectively.  相似文献   

3.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

4.
We have established an ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood sample containing ethanol and isobutyl alcohol (internal standard, IS) in a 7.0-ml vial at 55°C for 15 min, 5 ml of the headspace vapor was drawn into a glass syringe and injected into a GC port. All vapor was introduced into an Rtx-BAC2 wide-bore capillary column in the splitless mode at −60°C oven temperature to trap entire analytes, and then the oven temperature was programmed up to 240°C for GC measurements with flame ionization detection. The present method gave sharp peaks of ethanol and IS, and low background noise for whole blood samples. The mean partition into the gaseous phase for ethanol and IS was 3.06±0.733 and 8.33±2.19%, respectively. The calibration curves showed linearity in the range 0.02–5.0 μg/ml whole blood. The detection limit was estimated to be 0.01 μg/ml. The coefficients of intra-day and inter-day variation for spiked ethanol were 8.72 and 9.47%, respectively. Because of the extremely high sensitivity, we could measure low levels of endogenous ethanol in whole blood of subjects without drinking. The concentration of endogenous ethanol measured for 10 subjects under uncontrolled conditions varied from 0 to 0.377 μg/ml (mean, 0.180 μg/ml). Data on the diurnal changes of endogenous ethanol in whole blood of five subjects under strict food control are also presented; they are in accordance with the idea that endogenous blood ethanol is of enteric bacterial origin.  相似文献   

5.
We used a rapid, sensitive and reliable high-performance liquid chromatographic method for the determination of tetramethylpyrazine in rat brain tissue and plasma. The lower limit of quantification in plasma and brain tissue was 0.1 μg/ml and 0.1 μg/g, respectively, and only a small amount of plasma (100 μl) or brain tissue (100 μg) was required for analysis. The decline in the concentration of tetramethylpyrazine in plasma was generally two-exponential at a dose of 2, 5, or 10 mg/kg administered intravenously. Concentrations of tetramethylpyrazine in various regions of the brain (cerebral cortex, brainstem, striatum, hippocampus, cerebellum and midbrain) were not significantly different at 15 min following drug administration (10 mg/kg, i.v.). In additional analysis, mean concentration of the tetramethylpyrazine in rat plasma was approximately five-times greater than the drug in brain tissue.  相似文献   

6.
Optimization for headspace solid-phase microextraction (SPME) was studied with a view to performing gas chromatographic–mass spectrometric (GC–MS) screening of volatile hydrocarbons (VHCs) in blood. Twenty hydrocarbons comprising aliphatic hydrocarbons ranging from n-hexane to n-tridecane, and aromatic hydrocarbons ranging from benzene to trimethylbenzenes were used in this study. This method can be used for examining a burned body to ascertain whether the victim had been alive or not when the burning incident took place. n-Hexane, n-heptane and benzene, the main indicators of gasoline components, were found as detectable peaks through the use of cryogenic oven trapping upon SPME injection into a GC–MS instrument. The optimal screening procedure was performed as follows. The analytes in the headspace of 0.2 g of blood mixed with 0.8 ml of water plus 0.2 μg of toluene-d8 at −5°C were adsorbed to a 100-μm polydimethylsiloxane (PDMS) fiber for 30 min, and measured using the full-mass-scanning GC–MS method. The lower detection limits of all the compounds were 0.01 μg per 1 g of blood. Linearities (r2) within the range 0.01 to 4 μg per 1 g of blood were only obtained for the aromatic hydrocarbons at between 0.9638 (pseudocumene) and 0.9994 (toluene), but not for aliphatic hydrocarbons at between 0.9392 (n-tridecane) and 0.9935 (n-hexane). The coefficients of variation at 0.2 μg/g were less than 8.6% (n-undecane). In conclusion, this method is feasible for the screening of volatile hydrocarbons from blood in forensic medicine.  相似文献   

7.
Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry · h−1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0.32 nmol per ml of sediment slurry · h−1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i.e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 μM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 μM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.  相似文献   

8.
The conversion of arachidonic acid to prostaglandins (PG's) and thromboxane B2 (TXB2) was investigated in homogenates from fetal and adult bovine and rabbit lungs. Adult bovine lungs were very active in converting arachidonic acid (100 μg/g tissue) to both PGE2 (10.7 μg/g tissue) and TXB2 (6.2 μ/g tissue). Smaller amounts of PGF (0.9 μ/g) and 6-oxoPGF were formed. Homogenates from fetal calf lungs during the third trimester of pregnancy were quite active in converting arachidonic acid to PGE2, but formed very little TXB2, PGF or 6-oxoPGF. Homogenates from rabbit lungs converted arachidonic acid (100 μg/g) mainly to PGE2, both before and after birth. The amount of PGE2 formed increased during gestation to a maximum of about 6 μg/g tissue at 28 days of gestation. It then decreased to a minimum (1.5 μg/g) which was observed 8 days after birth, followed by an increase to about 4 μg/g in older rabbits.  相似文献   

9.
Biotinylated denatured bovine serum albumin (Bt-dBSA)-coated cadmium telluride (CdTe) quantum dot (QD) conjugates were prepared and used to develop the multiplexed fluoroimmunoassay for the simultaneous determination of five chemical residues. An immune complex was formed using avidin as the bridge to link the Bt-dBSA-QDs with the antibodies. Primarily, individual quantitative determinations of five representative chemical residues were carried out based on the different emission properties of the QDs. Five antibodies were then conjugated with the corresponding QDs to establish the indirect competition fluorescent-linked immunosorbent assay (ic-FLISA) for the simultaneous detection of five chemicals in one well of a microplate. The linear range for dexamethason (DEX) was from 0.33 μg/kg to 10 μg/kg, 0.28 μg/kg to 10 μg/kg for gentamicin (GM), 0.16 μg/kg to 25 μg/kg for clonazepam (CZP), 0.17 μg/kg to 10 μg/kg for medroxyprogesterone acetate (MPA) and 0.32 μg/kg to 25 μg/kg for ceftiofur (CEF), respectively. The limit of detection (LOD) for the simultaneous determination of DEX, GM, CZP, MPA and CEF were as low as 0.13 μg/kg, 0.16 μg/kg, 0.07 μg/kg, 0.06 μg/kg and 0.14 μg/kg, respectively. This detection method was used to analyze samples of pork muscle and the recoveries ranged from 61.3% to 80.3% for DEX and from 74.0% to 87.2% for MPA. Further more, good correlation between the novel ic-FLISA and traditional ELISA was demonstrated during the determination of DEX and MPA residues in real samples. The QD-based protocol described here is less time consuming than the classical method and it may be sufficiently flexible to be used in other systems for the simultaneous multicolor detection of the drugs.  相似文献   

10.

Objective

Calprotectin has been well emulated recently in adults as well as in children. The aim of this study was to assess fecal calprotectin concentrations in healthy children aged from 1 to 4 years.

Methods

Volunteers were enlisted from 3 nurseries. A brief questionnaire was used to ensure these children meet the inclusion criteria, and some clinical and sociodemographic factors were collected. Anthro software (version 3.1) was used to calculated Length-for-age Z-scores (LAZ), weight-for-age Z-scores (WAZ), and weight-for-length Z-scores (WLZ) respectively. Fecal calprotectin was detected by a commercially available ELISA.

Results

In total 274 children were recruited, with age ranging from 1 to 4 years old. The median FC concentration was 83.19 μg/g [range 4.58 to 702.50 μg/g, interquartile range (IQR) 14.69–419.45 μg/g] or 1.92 log10 μg/g (range 0.66 log10 to 2.85 log10 μg/g, IQR 1.17 log10-2.62 log10 μg/g). All of the children were divided into three groups, 1–2 years (12–24 months), 2–3 years (24–36 months), 3–4 years (36–48 months), with median FC concentrations 96.14 μg/g (1.98 log10 μg/g), 81.48 μg/g (1.91 log10 μg/g), 65.36 μg/g (1.82 log10 μg/g), respectively. There was similar FC level between boys and girls. FC concentrations showed a downward trend by the growing age groups. A statistic difference was found in FC concentrations among groups 1–2 years, 2–3 years and 3–4 years (P = 0.016). In inter-groups comparison, a significant difference was found between children aged 1–2 years and children aged 3–4 years (P = 0.007). A negative correlation trend was found between age and FC concentration (Spearman''s rho = -0.167, P = 0.005) in all the participants. A simple correlation was performed among WLZ, WAZ, birth weight, or birth length with FC, and there was no correlation being observed.

Conclusion

Children aged from 1 to 4 years old have lower FC concentrations compared with healthy infants (<1years), and higher FC concentrations when comparing with children older than 4 years and adults.  相似文献   

11.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

12.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

13.
Headspace solid-phase microextraction (HS-SPME) was utilized for the determination of three dichlorobenzene isomers (DCBs) in human blood. In the headspace at 30°C, DCBs were absorbed for 15 min by a 100-μm polydimethylsiloxane (PDMS) fiber. They were then analyzed by capillary column gas chromatography–mass spectrometry (GC–MS). By setting the initial column oven temperature at 20°C, the three isomers were resolved at the baseline level. p-Xylene-d10 was used as the internal standard (I.S.). For quantitation, the molecular ion at m/z 146 for each isomer and the molecular ion at m/z 116 for I.S. were selected. For day-to-day precision, relative standard deviations in the range 3.2–10.7% were found at blood concentrations of 1.0 and 10 μg/ml. Each compound was detectable at a level of at least 0.02 μg per 1 g of whole blood (by full mass scanning). HS-SPME–GC–MS, when performed at relatively low temperatures, was found to be feasible in toxicological laboratories. Using this method, the plasma levels of one patient who had drunk a pesticide-like material were measured.  相似文献   

14.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

15.
A high-performance liquid chromatographic assay is described as a routine analytical method for the determination of flumequine (FLU) and its hydroxylated metabolite (OH-FLU) in pig kidney tissue. Kidney samples (2 g) containing FLU and OH-FLU were extracted by liquid-liquid extraction with ethyl acetate (10 ml). Analytical separations were performed by reversed-phase HPLC with fluorometric detection at 252 nm excitation and 356 nm emission under gradient conditions. The mobile phase was acetonitrile-2.7·10−3 M oxalic acid in water (pH 2.5). The assay is specific and reproducible within the flumequine range of 0.050–2.5 μg/g and recovery at 0.050 μg/g was 94.8%.  相似文献   

16.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

17.
The well-known beneficial health effects of Se have demanded the development of rapid and accurate methods for its analysis. A flow injection (FI) method with inductively coupled plasma mass spectrometry (ICP-MS) as a selenium-selective detector was optimized. Flow injection was carried out using a Knauer 1100 smartline inert series liquid chromatograph coupled with a Perkin Elmer DRC II ICP-mass spectrometer. For sample injection a Perkin Elmer electronic valve equipped with a 25 μL sample loop was employed. Before measurement, standards or samples were administered with 1 μg/L rhodium as internal standard for correction of changes in detector response according to changes in sample electrolyte concentration. The method characterization parameters are: LOD (3σ criterion): 26 ng/L, LOQ (10σ criterion): 86 ng/L, linearity: 0.05–>10 μg/L, r2=0.9999, serial or day-to-day precision at 2 μg/L: 4.48% or 5.6%. Accuracy was determined by (a) recovery experiments (CSF spiked with 2 μg/L Se); (b) comparison of FI-ICP-MS measurement with graphite furnace atomic absorption (GFAAS) measurements of 1:10 diluted serum samples; (c) Se determination in urine and serum control materials. Recovery (a) was 101.4%, measurement comparison with GFAAS (b) showed 98.8% (5 serum samples, 1:10 diluted in the range of 0.5–1.3 μg/L, compared to GFAAS determination, which was set to 100%), and accuracy was 96.8% or 105.6% for the serum or urine control material. Analysis time per sample was short and typically below 2 min for the complete measurement, including sample introduction, sample-line purge and quadruplicate Se determination.This method was used to determine Se in cerebrospinal fluid (CSF) and plasma (here parallel to GFAAS) in 35 paired serum and CSF samples. Se determination gave values in the range of 42–130 μg/L for serum and 1.63–6.66 μg/L for CSF. The median for Se in 35 individual CSF samples was 3.28 μg/L, the mean (±SD) was 3.67 (1.35) μg/L, whilst for individual serum samples the median was 81 μg/L and the mean (±SD) was 85 (26) μg/L. When relating the paired Se concentrations of CSF samples to respective serum samples it turned out that Se-CSF (behind blood brain barrier (BBB)) is independent on Se-serum concentration (before BBB).  相似文献   

18.
Eosinophilia have been implicated in a broad range of diseases, most notably allergic conditions (e.g. asthma, rhinitis and atopic dermatitis) and inflammatory diseases. These diseases are characterized by an accumulation of eosinophils in the affected tissue. Defining the mechanisms that control the recruitment of eosinophil is fundamental to understanding how these diseases progress and identifying a novel target for drug therapy. Accordingly, this study was conducted to evaluate the regulatory effect of Schizandrae Fructus (SF) on the expression of eotaxin, an eosinophil-specific chemokine released in respiratory epithelium following allergic stimulation, as well as its effects on eosinophil migration.To accomplish this, human epithelial lung cells (A549 cell) were stimulated with a combination of TNF-α (100 ng/ml) and IL-4 (100 ng/ml) for 24 h. The cells were then restimulated with TNF-α (100 ng/ml) and IL-1β (10 ng/ml) to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis for another 24 h. Next, the samples were treated with various concentrations of Schizandrae Fructus (SF) (1, 10, 100, 1000 μg/ml) or one of the major constituents of SF, schizandrin (0.1, 1, 10, 100 μg/ml), after which following inhibition effect assay was performed triplicates in three independence.The levels of eotaxin in secreted proteins were suppressed significantly by SF (100 and 1000 μg/ml, p<0.01) and schizandrin (10 and 100 μg/ml, p<0.01). In addition, SF (1, 10, 100 and 1000 μg/ml) decreased mRNA expression levels in A549 cells significantly (p<0.01). Eosinophil recruitment to lung epithelial cells was also reduced by SF, which indicates that eotaxin plays a role in eosinophil recruitment. Furthermore, treatment with SF suppressed the expression of another chemokine, IL-8 (0.1 and 1 μg/ml SF, p<0.01), as well as intercellular adhesion molecule-1 (10 and 100 μg/ml SF, p<0.01) and vascular cell adhesion molecule-1 (0.1 and 1 μg/ml SF, p<0.05), which are all related to eosinophil migration. Taken together, these findings indicate that SF may be a desirable medicinal plant for the treatment of allergic diseases.  相似文献   

19.
A rapid and sensitive high-performance liquid chromatography–electrospray MS method has been developed to determine tissue distribution of betulinic acid in mice. The method involved deproteinization of these samples with 2.5 volumes (v/w) of acetonitrile–ethanol (1:1) and then 5 μl aliquots of the supernatant were injected onto a C18 reversed-phase column coupled with an electrospray MS system. The mobile phase employed isocratic elution with 80% acetonitrile for 10 min; the flow-rate was 0.7 ml/min. The column effluent was analyzed by selected ion monitoring for the negative pseudo-molecular ion of betulinic acid [M−H] at m/z 455. The limit of detection for betulinic acid in biological samples by this method was approximately 1.4 pg and the coefficients of variation of the assay (intra- and inter-day) were generally low (below 9.1%). When athymic mice bearing human melanoma were treated with betulinic acid (500 mg/kg, i.p.), distribution was as follows: tumor, 452.2±261.2 μg/g; liver, 233.9±80.3 μg/g; lung, 74.8±63.7 μg/g; kidney, 95.8±122.8 μg/g; blood, 1.8±0.5 μg/ml. No interference was noted due to endogenous substances. These methods of analysis should be of value in future studies related to the development and characterization of betulinic acid.  相似文献   

20.
Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号