首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achebach S  Selmer T  Unden G 《The FEBS journal》2005,272(16):4260-4269
The active form of the oxygen sensor fumarate nitrate reductase regulator (FNR) of Escherichia coli contains a [4Fe-4S] cluster which is converted to a [2Fe-2S] cluster after reaction with air, resulting in inactivation of FNR. Reaction of reconstituted [4Fe-4S].FNR with air resulted within 5 min in conversion to apoFNR. The rate was comparable to the rate known for [4Fe-4S].FNR/[2Fe-2S].FNR cluster conversion, suggesting that apoFNR is a product of [2Fe-2S].FNR decomposition and a final form of air-inactivated FNR in vitro. Formation of apoFNR and the redox state of the cysteinyl residues were determined in vitro by alkylation. FNR contains five cysteinyl residues, four of which (Cys20, Cys23, Cys29 and Cys122) ligate the FeS clusters. Alkylated FNR and proteolytic fragments thereof were analyzed by MALDI-TOF. ApoFNR formed by air inactivation of [4Fe-4S].FNR in vitro contained one or two disulfides. Only disulfide pairs Cys16/20 and Cys23/29 were formed; Cys122 was never part of a disulfide. The same type of disulfide was found in apoFNR obtained during isolation of FNR, suggesting that cysteine disulfide formation follows a fixed pattern. ApoFNR, including the form with two disulfides, can be reconstituted to [4Fe-4S].FNR after disulfide reduction. The experiments suggest that apoFNR is a major form of FNR under oxic conditions.  相似文献   

2.
3.
4.
The oxygen sensor regulator FNR (fumarate nitrate reductase regulator) of Escherichia coli is known to be inactivated by O2 as the result of conversion of a [4Fe-4S] cluster of the protein into a [2Fe-2S] cluster. Further incubation with O2 causes loss of the [2Fe-2S] cluster and production of apoFNR. The reactions involved in cluster assembly and reductive activation of apoFNR isolated under anaerobic or aerobic conditions were studied in vivo and in vitro. In a gshA mutant of E. coli that was completely devoid of glutathione, the O2 tension for the regulatory switch for FNR-dependent gene regulation was decreased by a factor of 4-5 compared with the wild-type, suggesting a role for glutathione in FNR function. In isolated apoFNR, glutathione could be used as the reducing agent for HS- formation required for [4Fe-4S] assembly by cysteine desulfurase (NifS), and for the reduction of cysteine ligands of the FeS cluster in FNR. Air-inactivated FNR (apoFNR without FeS) could be reconstituted to [4Fe-4S].FNR by the same reaction as used for apoFNR isolated under anaerobic conditions. The in vivo effects of glutathione on FNR function and the role of glutathione in the formation of active [4Fe-4S].FNR in vitro suggest an important role for glutathione in the de novo assembly of FNR and in the reductive activation of air-oxidized FNR under anaerobic conditions.  相似文献   

5.
Under anoxic conditions, the Escherichia coli oxygen sensor FNR (fumarate nitrate reductase regulator) is in the active state and contains a [4Fe-4S] cluster. Oxygen converts [4Fe-4S]FNR to inactive [2Fe-2S]FNR. After prolonged exposure to air in vitro, apoFNR lacking a Fe-S cluster is formed. ApoFNR can be differentiated from Fe-S-containing forms by the accessibility of the five Cys thiol residues, four of which serve as ligands for the Fe-S cluster. The presence of apoFNR in aerobically and anaerobically grown E. coli was analyzed in situ using thiol reagents. In anaerobically and aerobically grown cells, the membrane-permeable monobromobimane labeled one to two and four Cys residues, respectively; the same labeling pattern was found with impermeable thiol reagents after cell permeabilization. Alkylation of FNR in aerobic bacteria and counting the labeled residues by mass spectrometry showed a form of FNR with five accessible Cys residues, corresponding to apoFNR with all Cys residues in the thiol state. Therefore, aerobically growing cells contain apoFNR, whereas a significant amount of Fe-S-containing FNR was not detected under these conditions. Exposure of anaerobic bacteria to oxygen caused conversion of Fe-S-containing FNR to apoFNR within 6 min. ApoFNR from aerobic bacteria contained no disulfide, in contrast to apoFNR formed in vitro by air inactivation, and all Cys residues were in the thiol form.  相似文献   

6.
7.
Ferredoxin from Azotobacter chroococcum has been studied by low-temperature magnetic-circular-dichroism and electron-paramagnetic-resonance spectroscopy. When aerobically isolated ferredoxin contains a [3Fe-4S] and [4Fe-4S] cluster. Anaerobic treatment with dithionite in the presence of ethanediol reduces the [3Fe-4S] cluster to give two spectroscopically distinct forms RI and RII which are reversibly interconvertible with a pKa approximately 7.5. The higher-pH form, RII, has a high affinity for ferrous ion and converts readily to a [4Fe-4S]1+ cluster, scavenging iron from the medium. The presence of the iron chelator EDTA inhibits this conversion.  相似文献   

8.
The product of the miaB gene, MiaB, from Escherichia coli participates in the methylthiolation of the adenosine 37 residue during modification of tRNAs that read codons beginning with uridine. A His-tagged version of MiaB has been overproduced and purified to homogeneity. Gel electrophoresis and size exclusion chromatography revealed that MiaB protein is a monomer. As isolated MiaB contains both iron and sulfide and an apoprotein form can chelate as much as 2.5-3 iron and 3-3.5 sulfur atoms per polypeptide chain. UV-visible and EPR spectroscopy of MiaB indicate the presence of a [4Fe-4S] cluster under reducing and anaerobic conditions, whereas [2Fe-2S] and [3Fe-4S] forms are generated under aerobic conditions. Preliminary site-directed mutagenesis studies suggest that Cys(157), Cys(161), and Cys(164) are involved in iron chelation and that the cluster is essential for activity. Together with the previously shown requirement of S-adenosylmethionine (AdoMet) for the methylthiolation reaction, the finding that MiaB is an iron-sulfur protein suggests that it belongs to a superfamily of enzymes that uses [Fe-S] centers and AdoMet to initiate radical catalysis. MiaB is the first and only tRNA modification enzyme known to contain an Fe-S cluster.  相似文献   

9.
10.
11.
Ugulava NB  Gibney BR  Jarrett JT 《Biochemistry》2000,39(17):5206-5214
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  相似文献   

12.
13.
Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys(135), is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys(135) retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in Planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism.  相似文献   

14.
15.
The Escherichia coli DNA repair enzyme MutY plays an important role in the recognition and repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine-2'-deoxyadenosine (OG*A) mismatches in DNA. MutY prevents DNA mutations caused by the misincorporation of A opposite OG by catalyzing the deglycosylation of the aberrant adenine. MutY is representative of a unique subfamily of DNA repair enzymes that also contain a [4Fe-4S]2+ cluster, which has been implicated in substrate recognition. Previously, we have used site-directed mutagenesis to individually replace the cysteine ligands to the [4Fe-4S]2+ cluster of E. coli MutY with serine, histidine, or alanine. These experiments suggested that histidine coordination to the iron-sulfur cluster may be accommodated in MutY at position 199. Purification and enzymatic analysis of C199H and C199S forms indicated that these forms behave nearly identical to the WT enzyme. Furthermore, introduction of the C199H mutation in a truncated form of MutY (C199HT) allowed for crystallization and structural characterization of the modified [4Fe-4S] cluster coordination. The C199HT structure showed that histidine coordinated to the iron cluster although comparison to the structure of the WT truncated enzyme indicated that the occupancy of iron at the modified position had been reduced to 60%. Electron paramagnetic resonance (EPR) spectroscopy on samples of C199HT indicates that a significant percentage (15-30%) of iron clusters were of the [3Fe-4S]1+ form. Oxidation of the C199HT enzyme with ferricyanide increases the amount of the 3Fe cluster by approximately 2-fold. Detailed kinetic analysis on samples containing a mixture of [3Fe-4S]1+ and [4Fe-4S]2+ forms indicated that the reactivity of the [3Fe-4S]1+ C199HT enzyme does not differ significantly from that of the WT truncated enzyme. The relative resistance of the [4Fe-4S]2+ cluster toward oxidation, as well as the retention of activity of the [3Fe-4S]1+ form, may be an important aspect of the role of MutY in repair of DNA damage resulting from oxidative stress.  相似文献   

16.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

17.
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo.  相似文献   

18.
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. M?ssbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.  相似文献   

19.
Beef heart aconitase, as isolated under aerobic conditions, is inactive and contains a [3Fe-4S]1+ cluster. On incubation at pH greater than 9.5 (or treatment with 4-8 M urea) the color of the protein changes from brown to purple. This purple form is stable and can be converted back in good yield to the active [4Fe-4S]2+ form by reduction in the presence of iron. Active aconitase is converted to the purple form at alkaline pH only after oxidative inactivation. The Fe/S2- ratio of purple aconitase is 0.8, indicating the presence of [3Fe-4S] clusters. The number of SH groups readily reacting with 5,5'-dithiobis(2-nitrobenzoic acid) is increased from approximately 1 in the enzyme as isolated to 7-8 in the purple form, indicating a partial unfolding of the protein. On conversion of inactive aconitase to the purple form, the EPR signal at g = 2.01 (S = 1/2) is replaced by signals at g = 4.3 and 9.6 (S = 5/2). M?ssbauer spectroscopy shows that purple aconitase has high-spin ferric ions, each residing in a tetrahedral environment of sulfur atoms. The three iron sites are exchange-coupled to yield a ground state with S = 5/2. Analysis of the data within a spin coupling model shows that J13 congruent to J23 and 2 J12 less than J13, where the Jik describe the antiferromagnetic (J greater than 0) exchange interactions among the three iron pairs. Comparison of our data with those reported for synthetic Fe-S clusters (Hagen, K. S., Watson, A. D., and Holm, R. H., (1983) J. Am. Chem. Soc. 105, 3905-3913) shows that purple aconitase contains a linear [3Fe-4S]1+ cluster, a structural isomer of the S = 1/2 cluster of inactive aconitase. Our studies also show that protein-bound [2Fe-2S] clusters can be generated under conditions where partial unfolding of the protein occurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号