首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Arachidonic acid (AA) is a precursor of important vasoactive metabolites, but the role of AA-mediated vasodilation in Type 2 diabetes is not known. Using Zucker diabetic fatty (ZDF) rats, we examined the effects of AA in small mesenteric arteries preconstricted with endothelin. In ZDF rat mesenteric arteries, 1 microM AA produced only one-third the amount of dilation as in vessels from lean control animals. In lean control rats, the effect of AA was significantly and predominantly inhibited by the lipoxygenase inhibitors baicalein and cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC). However, baicalein and CDC had no effect on AA-mediated dilation in ZDF rat mesenteric arteries. The major [3H]AA metabolite produced by isolated mesenteric arteries in both lean and ZDF rats was 12-hydroxyeicosatetraenoic acid (12-HETE), but the amount of [3H]12-HETE produced by ZDF rat vessels was only 36% of that of control vessels. In addition, 12-HETE produced similar amounts of dilation in lean and ZDF rat mesenteric arteries. Immunoblot analysis showed an 81% reduction in 12-lipoxygenase protein in ZDF rat mesenteric arteries. Immunofluorescence labeling showed strong nitrotyrosine signals in ZDF rat mesenteric arteries that colocalized with 12-lipoxygenase in endothelium, and 12-lipoxygenase coprecipitation with anti-nitrotyrosine antibodies was enhanced in ZDF rat vessels. We conclude that AA-mediated relaxation in ZDF rat small mesenteric arteries is impaired due to reduced 12-lipoxygenase protein and activity. Increased oxidative stress and nitration of 12-lipoxygenase may underlie the impairment of AA-mediated relaxation in small mesenteric arteries of diabetic rats.  相似文献   

2.
We have examined the progression of vascular and neural deficits in Zucker rats, Zucker diabetic fatty (ZDF) diabetic rats, and age-matched lean ZDF rats from 8 to 40 wk of age. Both the ZDF diabetic and Zucker rats were glucose intolerant at 8 wk of age. The Zucker rats did not become hyperglycemic but were hyperinsulinemic through 32 wk of age. All ZDF diabetic rats became hyperglycemic by 8 wk of age. Through their life span, serum free fatty acids and triglycerides levels were significantly higher in Zucker and ZDF diabetic rats compared with age-matched lean ZDF rats. After 24 and 28 wk of age, endoneurial blood flow was significantly decreased in ZDF diabetic and Zucker rats. Motor nerve conduction velocity was significantly decreased after 12-14 wk of age in ZDF diabetic rats and at 32 wk of age in Zucker rats. ACh-mediated vascular relaxation of epineurial arterioles of the sciatic nerve was impaired after 8-10 wk of age in ZDF diabetic rats and after approximately 16 wk of age in Zucker rats. In contrast, vascular relaxation mediated by calcitonin gene-related peptide was impaired significantly after 28 wk of age in ZDF diabetic rats but not impaired in Zucker rats up to 40 wk of age. Markers of oxidative stress were differentially elevated in ZDF diabetic rats and Zucker rats. These data indicate that vascular and neural dysfunction develops in both Zucker and ZDF diabetic rats but at different rates, which may be the result of hyperglycemia.  相似文献   

3.
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.  相似文献   

4.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.  相似文献   

5.
Increasing afferent renal nerve activity decreases efferent renal nerve activity and increases urinary sodium excretion. Activation of renal pelvic mechanosensory nerves is impaired in streptozotocin (STZ)-treated rats (model of type 1 diabetes). Decreased activation of renal sensory nerves would lead to increased efferent renal nerve activity, sodium retention, and hypertension. We examined whether the reduced activation of renal sensory nerves in STZ rats was due to increased renal angiotensin activity and whether activation of the renal sensory nerves was impaired in obese Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). In an isolated renal pelvic wall preparation from rats treated with STZ for 2 wk, PGE2 failed to increase the release of substance P, from 5 +/- 1 to 6 +/- 1 pg/min. In pelvises from sham STZ rats, PGE2 increased substance P release from 6 +/- 1 to 13 +/- 2 pg/min. Adding losartan to the incubation bath increased PGE2-mediated release of substance P in STZ rats, from 5 +/- 1 to 10 +/- 2 pg/min, but had no effect in sham STZ rats. In pelvises from obese ZDF rats (22-46 wk old), PGE2 increased substance P release from 12.0 +/- 1.2 to 18.3 +/- 1.2 pg/min, which was less than that from lean ZDF rats (10.3 +/- 1.6 to 22.5 +/- 2.4 pg/min). Losartan had no effect on the PGE2-mediated substance P release in obese or lean ZDF rats. We conclude that the mechanisms involved in the decreased responsiveness of the renal sensory nerves in STZ rats involve activation of the renin angiotensin system in STZ but not in obese ZDF rats.  相似文献   

6.
Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis.  相似文献   

7.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

8.
Previous studies suggest that epoxyeicosatrienoic acids (EETs) are vasodilators of the mesenteric artery; however, the production and regulation of EETs in the mesenteric artery remain unclear. The present study was designed 1) to determine which epoxygenase isoform may contribute to formation of EETs in mesenteric arteries and 2) to determine the regulation of mesenteric artery cytochrome P-450 (CYP) enzymes in obese Zucker rats. Microvessels were incubated with arachidonic acid, and CYP enzyme activity was determined. Mesenteric arteries demonstrate detectable epoxygenase and hydroxylase activities. Next, protein and mRNA expressions were determined in microvessels. Although renal microvessels express CYP2C23 mRNA and protein, mesenteric arteries lacked CYP2C23 expression. CYP2C11 and CYP2J mRNA and protein were expressed in mesenteric arteries and renal microvessels. In addition, mesenteric artery protein expression was evaluated in lean and obese Zucker rats. Compared with lean Zucker rats, mesenteric arterial CYP2C11 and CYP2J proteins were decreased by 38 and 43%, respectively, in obese Zucker rats. In contrast, soluble epoxide hydrolase mRNA and protein expressions were significantly increased in obese Zucker rat mesenteric arteries. In addition, nitric oxide-independent dilation evoked by acetylcholine was significantly attenuated in mesenteric arteries of obese Zucker rats. These data suggest that the main epoxygenase isoforms expressed in mesenteric arteries are different from those expressed in renal microvessels and that decreased epoxygenases and increased soluble epoxide hydrolase are associated with impaired mesenteric artery dilator function in obese Zucker rats.  相似文献   

9.
We measured infarct size after coronary occlusion (30 min) and reperfusion (24 h) in genetic non-insulin-dependent Zucker diabetic fatty (ZDF) rats with and without 4-wk cholesterol feeding. Infarct size was similar in ZDF rats and lean control rats but was significantly larger in cholesterol-fed diabetic rats than in cholesterol-fed lean rats (P < 0.05). Plasma levels of glucose, insulin, and triglycerides were significantly higher in diabetic rats and were not influenced by cholesterol feeding. The increase in total plasma cholesterol induced by cholesterol feeding was significantly greater in diabetic rats than in lean rats (P < 0.05). A significant positive correlation was found between total plasma cholesterol and infarct size (P < 0.05). Myeloperoxidase activity, as an index of neutrophil accumulation, was significantly higher and expression of P-selectin was more marked in the ischemic myocardium of cholesterol-fed diabetic rats than of cholesterol-fed lean rats. Acetylcholine-induced endothelium-dependent relaxation (EDR) of aortic rings was markedly impaired in cholesterol-fed diabetic rats. Thus cholesterol feeding significantly exacerbated myocardial injury produced by coronary occlusion-reperfusion in non-insulin-dependent diabetic rats, possibly because of enhanced expression of P-selectin and impairment of EDR in the coronary bed.  相似文献   

10.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

11.
Diabetes results in several metabolic changes, including alterations in the transport, distribution, excretion, and accumulation of metals. While changes have been examined in several rat models of insulin resistance and diabetes, the metal ion concentrations in the tissues of Zucker lean, Zucker obese (an insulin resistance and early stage diabetes model), and Zucker diabetic fatty (ZDF, a type 2 diabetes model) have not previously been examined in detail. The concentration of Cu, Zn, Fe, Mg, and Ca were examined in the liver, kidney, heart and spleen, and Cr concentration in the liver and kidney of these rats were examined. Zucker obese rats have a reduction in the concentration of Cu, Zn, Fe, Mg in the liver compared to ZDF and/or lean Zucker rats, presumably as a result of the increased fat content of the liver of the obese rats. ZDF rats have increased concentrations of kidney Cu compared to the lean rats, while kidney Ca concentrations are increased in the Zucker obese rats. Spleen Fe concentrations are decreased in Zucker obese rats compared to the lean rats. No effects on metal concentrations in the heart were observed between the lean, obese, and ZDF rats, and no effects on Cr concentrations were identified. Cr(III) complexes have previously been shown to have beneficial effects on the signs of insulin resistance in Zucker obese and ZDF rats. The effects of daily gavage administration of chromium picolinate ([Cr(pic)3]) (1 mg?Cr/kg body mass), CrCl3 (1 mg?Cr/kg body mass), and Cr3 ([Cr3O(propionate)6(H2O)3]+) (33 μg and 1 mg?Cr/kg body mass) on metal concentrations in these tissues were examined. Treatment with CrCl3 and Cr3, but not [Cr(pic)3], at 1 mg?Cr/kg resulted in a statistically significant accumulation of Cr in the kidney of lean and obese but not ZDF rats but resulted in lowering the elevated levels of kidney Cu in ZDF rats, suggesting a beneficial effect on this symptom of type 2 diabetes.  相似文献   

12.
In the present study, we tested the hypothesis that ANG II causes a greater vasoconstriction in obese Zucker rats, a model of type 2 diabetes, with mild hypertension. Measurement of isometric tension in isolated aortic rings with intact endothelium revealed a modest but not significantly greater ANG II-induced contraction in obese than lean rats. Removal of endothelium or inhibition of nitric oxide (NO) synthase by N(G)-nitro-L-arginine methyl ester (L-NAME) enhanced 1) ANG II-induced contraction in both lean and obese rats, being significantly greater in obese rats (E(max) g/g tissue, denuded: lean 572 +/- 40 vs. obese 664 +/- 16; L-NAME: lean 535 +/- 14 vs. obese 818 +/- 23) and 2) ANG II sensitivity in obese compared with lean rats, as revealed by the pD(2) values. Endothelin-1 and KCl elicited similar contractions in the aortic rings of lean and obese rats. ACh, a NO-dependent relaxing hormone, produced greater relaxation in the aortic rings of obese than lean rats, whereas sodium nitroprusside, an NO donor, elicited similar relaxations in both rat strains. The expression of the ANG type 1 (AT(1)) receptor protein and mRNA in the endothelium-intact aorta was significantly greater in obese than lean rats, whereas the endothelium-denuded rings expressed modest but not significantly greater levels of AT(1) receptors in obese than lean rats. The endothelial NO synthase protein and mRNA expression levels were higher in the aorta of obese than lean animals. We conclude that, although ANG II produces greater vasoconstriction in obese rat aortic rings, enhanced endothelial AT(1) receptor-mediated NO production appears to counteract the increased ANG II-induced vasoconstriction, suggesting that arterial AT(1) receptor may not be a contributing factor to hypertension in this model of obesity.  相似文献   

13.
Obesity, insulin resistance, dyslipidemia, and hypertension are components of the pathophysiological state known as metabolic syndrome. Adrenergic vasoconstriction is mediated through increases in cytosolic Ca2+ and the myofilaments' sensitivity to Ca2+. In many pathophysiological states, there is an enhanced role for Rho kinase (ROK)-mediated increases in Ca2+ sensitivity of the contractile apparatus. Thus we hypothesized that there is a greater role for ROK-mediated increases in Ca2+ sensitivity in alpha1-adrenergic vasoconstriction in arteries from obese Zucker (OZ) rats. Therefore, small gracilis muscle arteries from 11- to 12-wk-old and 16- to 18-wk-old lean and OZ rats were isolated, cannulated, and pressurized to 75 mmHg. For some experiments, vessels were loaded with fura 2-AM. Changes in luminal diameter and vessel wall Ca2+ concentration ([Ca2+]) were measured in response to phenylephrine (PE), the thromboxane mimetic U-46619, and KCl. alpha1-Adrenergic vasoconstriction was similar between 11- to 12-wk-old lean and obese animals and greater in older obese animals compared with controls. PE-induced increases in vascular smooth muscle cell [Ca2+] were blunted in OZ animals compared with lean controls in both age groups of animals. KCl and U-46619 elicited similar vasoconstriction and vascular smooth muscle cell [Ca2+] in both groups. ROK inhibition attenuated PE vasoconstriction to a greater degree in arteries from 11- to 12-wk-old OZ rats compared with lean animals; ROK inhibition in arteries from older rats right shifted both concentration-response curves to the same point. Total RhoA and ROKalpha protein expressions were similar between groups. These results suggest an enhanced role for the ROK pathway in alpha1-adrenergic vasoconstriction in metabolic syndrome.  相似文献   

14.
This study tested the hypothesis that evolution of the metabolic syndrome in obese Zucker rats (OZR) leads to impaired dilator reactivity of cerebral resistance arteries vs. responses determined in lean Zucker rats (LZR). Middle cerebral arteries (MCA) from 17-wk-old male LZR and OZR were isolated and cannulated with glass micropipettes. Vascular reactivity was assessed in response to challenge with ACh, sodium nitroprusside (SNP), reductions and elevations in Po2, 5-HT, and increased intralumenal pressure. Vessels were treated with the free radical scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol) to assess the role of superoxide production in altering reactivity, and passive vascular wall mechanics was assessed in each vessel. Vascular superoxide production was assessed in isolated arteries using fluorescence microscopy. Vessel dilation to ACh and hypoxia was impaired in OZR vs. LZR, although responses to SNP were normal. Vessel constriction to 5-HT, elevated Po2, and elevated intralumenal pressure was enhanced in OZR vs. LZR. Fluorescence microscopy demonstrated an increased superoxide production in arteries of OZR vs. LZR, correctable by incubation with tempol. Although treatment of vessels from OZR with tempol improved dilation to ACh and hypoxia, constrictor responses to 5-HT, elevated Po2, and pressure were not altered by tempol treatment. Indexes of vessel wall mechanics were comparable between groups. These results suggest that vasodilator reactivity of MCA of OZR in response to endothelium-dependent dilator stimuli is impaired vs. LZR and that this may represent a reduced bioavailability of signaling molecules due to oxidant scavenging. However, oxidative stress-independent increases in myogenic tone and constrictor reactivity may contribute to blunted dilator responses of cerebral microvessels.  相似文献   

15.
Exercise and insulin increase muscle glucose uptake by different mechanisms and also increase capillary recruitment, which is proposed to facilitate access for hormones and nutrients. The genetically obese Zucker rat shows impaired insulin- but not contraction-mediated glucose uptake in muscle. Recently, we have shown the genetically obese Zucker rats to have impaired insulin-mediated capillary recruitment and proposed that this contributes to the insulin resistance of muscle in vivo. Because this might imply a general loss of recruitable capillaries, we now assess responses to contraction in muscles of 18 +/- 3-wk-old lean and obese Zucker rats in vivo. Field stimulation (2 Hz, 0.1 ms) was conducted for 1 h on one leg of anesthetized instrumented rats, and measurements were made of femoral blood flow (FBF), heart rate (HR), blood pressure (BP), hindleg metabolism of 1-methylxanthine (a measure of capillary recruitment), hindleg glucose uptake (HGU), and lower leg muscle glucose uptake by 2-deoxyglucose (R'g). Lean animals (311 +/- 9 g) developed tension at 219 +/- 27 g/g muscle with no change in BP but with significant increases in HR, FBF, HGU, 1-MX metabolism, and R'g (P < 0.05), compared with nonstimulated control leans. Obese animals (469 +/- 7 g) developed tension at 265 +/- 31 g/g muscle with no change in HR or BP but with significant increases in FBF, HGU, 1-MX metabolism, and R'g (P < 0.05) compared with nonstimulated control obese rats. Muscle contraction of lean animals led to a greater increase in lower leg R'g, similar responses in HGU and 1-MX, and a smaller increase in FBF than in obese animals. A tight correlation between FBF and capillary recruitment was noted for all data (P < 0.001). It is concluded that contraction-mediated muscle capillary recruitment and glucose uptake are essentially normal in the obese Zucker rat and that control of FBF and capillary recruitment in exercise is closely linked.  相似文献   

16.
Previous studies have shown that the synthesis of renal cytochrome P-450 (CYP)-derived eicosanoids is downregulated in genetic or high-fat diet-induced obese rats. Experiments were designed to determine whether fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist, would induce renal eicosanoid synthesis and improve endothelial function in obese Zucker rats. Administration of fenofibrate (150 mg.kg(-1).day(-1) for 4 wk) significantly reduced plasma insulin, triglyceride, and total cholesterol levels in obese Zucker rats. CYP2C11 and CYP2C23 proteins were downregulated in renal vessels of obese Zucker rats. Consequently, renal vascular epoxygenase activity decreased by 15% in obese Zucker rats compared with lean controls. Chronic fenofibrate treatment significantly increased renal cortical and vascular CYP2C11 and CYP2C23 protein levels in obese Zucker rats, whereas it had no effect on epoxygenase protein and activity in lean Zucker rats. Renal cortical and vascular epoxygenase activities were consequently increased by 54% and 18%, respectively, in fenofibrate-treated obese rats. In addition, acetylcholine (1 microM)-induced vasodilation was significantly reduced in obese Zucker kidneys (37% +/- 11%) compared with lean controls (67% +/- 9%). Chronic fenofibrate administration increased afferent arteriolar responses to 1 microM of acetylcholine in obese Zucker rats (69% +/- 4%). Inhibition of the epoxygenase pathway with 6-(2-propargyloxyphenyl)hexanoic acid attenuated afferent arteriolar diameter responses to acetylcholine to a greater extent in lean compared with obese Zucker rats. These results demonstrate that the PPAR-alpha agonist fenofibrate increased renal CYP-derived eicosanoids and restored endothelial dilator function in obese Zucker rats.  相似文献   

17.
Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P < 0.05), but not in those from obese rats, when glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P < 0.05). These results suggest that abnormalities in cell signalling or in arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.  相似文献   

18.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

19.
Schwaninger RM  Sun H  Mayhan WG 《Life sciences》2003,73(26):3415-3425
The goals of this study were to determine the effects of type II diabetes mellitus on nitric oxide synthase-dependent responses of cerebral arterioles and on endothelial nitric oxide synthase (eNOS) protein in cerebral arterioles. We examined dilatation of cerebral (pial) arterioles in 13-15 week old male lean and diabetic obese Zucker rats in response to nitric oxide synthase-dependent agonists (acetylcholine and adenosine diphosphate (ADP)) and a nitric oxide synthase-independent agonist (nitroglycerin). We found that acetylcholine (10 microM) increased cerebral arteriolar diameter by 10 +/- 3% (mean +/- SE) in lean Zucker rats, but by only 2 +/- 2% in diabetic obese Zucker rats (p<0.05). In addition, ADP (100 microM) increased cerebral arteriolar diameter by 20 +/- 2% in lean Zucker rats, but by only 8 +/- 2% in diabetic obese Zucker rats (p<0.05). In contrast, nitroglycerin produced similar vasodilatation in lean and diabetic obese Zucker rats. Thus, impaired dilatation of cerebral arterioles in diabetic obese Zucker rats is not related to non-specific impairment of vasodilatation. Following these functional studies, we harvested cerebral microvessels for Western blot analysis of eNOS protein. We found that eNOS protein was significantly higher in diabetic obese Zucker rats than in lean Zucker rats (p<0.05). Thus, type II diabetes mellitus impairs nitric oxide synthase-dependent responses of cerebral arterioles. In addition, eNOS protein from cerebral blood vessels is increased in diabetic obese Zucker rats.  相似文献   

20.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号