首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The functional significance of the presence of opioid peptides in enzymatic digestion of bovine milk beta-casein remains unclear. Opiates modify intestinal electrolyte transport by acting on receptors located on the serosal side of the intestine. The aim of the present study is to determine under which conditions beta-casomorphins could act from the luminal side of the intestine. The effect of natural morphiceptin (beta-CM4-NH2) and the non metabolized analogue beta-[DAla2,4, Try5]-CM5-NH2 were studied on isolated rabbit ileum mounted in Ussing chambers. Both peptides caused a naloxone-reversible reduction in short-circuit current (lsc) and stimulated Na and Cl absorption after addition to the serosal side of the tissue. After mucosal addition, only the analogue (10(-3) M) crossed the epithelium intact (Jm-s = 3.5 +/- 1.2 nmol.h-1.cm-2) and reduced lsc. Morphiceptin, under the same conditions, was degraded by the intestinal mucosa without opiate action on electrolyte transport. Pretreatment of the ileum by 10(-3)M diisopropylfluorophosphate that inhibited brush-border dipeptidylpeptidase IV, prevented mucosal degradation of morphiceptin. Under these conditions, the peptide (10(-3)M) crossed the epithelium intact (Jm-s = 1.8 +/- 0.16 nmol.h-1.cm-2) and stimulated electrolyte absorption by means of an opioid mechanism. These results show that both natural morphiceptin and the protected analogue have an opiate activity on intestinal electrolyte transport. Their action from the lumen depends on their transfer intact to the serosal side of the intestine where opiate receptors are located. The limiting step in this transfer is at the brush-border membrane where dipeptidylpeptidase IV in particular seems to play a major role.  相似文献   

2.
To determine if there was a role for the submucosal nerves in cholera toxin (CT)-induced secretion, we studied the effects of serosal addition of two neurotoxins, the nerve conduction blocking agent, tetrodotoxin (TTX), and the nicotinic ganglionic blocking agent, hexamethonium (HXM), on electrolyte secretion in control isolated rabbit ileum and in that stimulated by CT. 1). In the absence of CT, the short circuit current (Isc) decreased after TTX (10(-7) M) (P less than 0.01) and was unaltered by HXM (10(-5) M). In the presence of CT, Isc increased but was not modified by 10(-7) M TTX or 10(-5) M HXM. 2) In control tissues the mean isotopic Na+ and Cl- fluxes were not significantly altered by TTX addition. Cl- absorption alone was significantly reduced by HXM (delta JCl- = 1.95 +/- 0.81 microEq.hr-1.cm-2; P less than 0.02). After stimulation with CT, TTX significantly inhibited Na+ and Cl- secretion (delta JNa+ = 2.15 +/- 0.61 and delta JCl- = 2.15 +/- 0.76 microEq.hr-1.cm-2; P less than 0.01). Similarly, HXM significantly inhibited CT-stimulated Na+ and Cl- secretion (delta JNa+ = 1.73 +/- 0.70 and delta JCl- = 1.46 +/- 0.62 microEq.hr-1.cm-2; P less than 0.02). 3) In TTX and HXM treated tissues there was no difference in the increase in Isc caused by cAMP (2 x 10(-3) M), calcium ionophore A 23187 (4 x 10(-6) M) and glucose (10(-3) M) compared to the untreated tissues in the presence or absence of CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The enteric neuropeptide galanin (GAL) increased the amplitude of spontaneous contractions in longitudinally oriented muscle strips and inhibited short-circuit current (Isc) elevations induced by transmural electrical stimulation (ES) of mucosal sheets from porcine jejunum in vitro. GAL-induced contractions (GAL EC50 = 9 nmol/l) were maximally 25% of those elicited by 10 mumol/l carbamylcholine and remained unaffected by atropine, tetrodotoxin, or tachyphylaxis to substance P. The presynaptic Ca2+ channel blocker, omega-conotoxin (0.1 mumol/l), inhibited GAL-induced contractions by 66%. GAL attenuated mucosal Isc elevations induced by ES with an IC50 = 13 nmol/l and at 0.1 mumol/l produced rapid decreases in basal Isc averaging 8 +/- 2 microA cm-1 in 77% of tissues examined. The alpha-adrenoceptor blocker phentolamine or the opiate antagonist naloxone did not alter tissue Isc responses to GAL. These results suggest that GAL modulates neuronal activity linked to secretomotor function in the porcine small intestine.  相似文献   

4.
The rumen epithelium of sheep and goats showed an increase in short circuit current ( Isc) and transepithelial conductance (gt) upon mucosal removal of divalent cations. A divalent-sensitive Isc and gt were present in Na+, K+ or Rb+ buffer, but nearly abolished in mucosal NMDG+ (N-methyl-D-glucamine) buffer. High K buffer, addition of BaCl2 or of ouabain on the serosal side also reduced or abolished the divalent-sensitive Isc. Mucosal Ca2+ was more potent in blocking Isc, but had the same potency as Mg2+ in blocking gt. A prolonged mucosal deprivation of Mg2+ ions increased gt, potential difference and basal as well as the Ca2+-sensitive Isc. Mucosal addition of Mg2+ had a smaller effect on gt after serosal preincubation with Ba. The data suggest that rumen epithelial cells exhibit an apical non-selective cation conductance, which permits the passage of monovalents in the mucosal absence of divalents. The development of a divalent-sensitive Isc in Na buffer requires Na+/K+ pumps and K+ recycling through Ba2+-sensitive K+ conductances on the basolateral side. This Isc is blocked by extracellular Ca2+ and both extracellular and intracellular Mg2+ ions. A prolonged deprivation of mucosal Mg2+ alone seems to affect intracellular Mg2+ in this Mg2+-absorbing tissue.  相似文献   

5.
In this study, electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula was investigated. In the ileum, a Na(+)-dependent, phloridzin- and amiloride-insensitive short-circuit current ( Isc) was present. Mucosal glucose stimulated a further phloridzin-sensitive, dose-dependent increase in Isc. A Na(+)-dependent, ouabain-sensitive Isc was also present in the caecum and colon. In the proximal and distal colon, amiloride (100 micro mol l(-1), mucosal) inhibited this Isc by 81+/-4% and 65+/-3%, respectively and the Ki for amiloride (approximately 1 micro mol l(-1)) was consistent with the inhibition of a classical epithelial Na(+) channel. In the caecum, 50% of the Isc was inhibited by amiloride (100 micro mol l(-1), mucosal). The amiloride-insensitive Isc in the colon was not due to electrogenic Cl(-) secretion, as serosal bumetanide (100 micro mol l(-1)) had no effect on the Isc. Furthermore, the secretagogues forskolin (10 micro mol l(-1)), carbachol (100 micro mol l(-1)) and dibutyryl-cAMP or dibutyryl-cGMP (100 micro mol l(-1)) did not stimulate electrogenic Cl(-) secretion by the colon. These results indicate that the transport properties of the hindgut of the possum differ significantly from those of eutherian mammals and may be associated with different functions of the hindgut of possums when compared to eutherian mammals.  相似文献   

6.
In mammalian intestine, a number of secretagogues have been shown to work through either cyclic nucleotide or calcium mediated pathways to elicit ion secretion. Because excessive intestinal electrolyte and fluid secretion is central to the pathogenesis of a variety of diarrheal disorders, understanding of these processes is essential to the development of future clinical treatments. In the current study, the effects of serotonin (5HT), histamine, and carbachol on intestinal ion transport were examined in in vitro preparations of rabbit ileum. All three agonists induced a rapid and transient increase short-circuit current (delta Isc) across ileal mucosa. Inhibition of the delta Isc response of all three agents in chloride-free solution or in the presence of bumetanide confirmed that chloride is the main electrolyte involved in electrogenic ion secretion. Pretreatment of tissue with tetrodotoxin or atropine did not effect secretagogue-mediated electrolyte secretion. While tachyphylaxis of delta Isc response was shown to develop after repeated exposure of a secretagogue to tissue, delta Isc responses after sequential addition of different agonists indicate that cross-tachyphylaxis between agents did not occur. Serotonin, histamine, and carbachol have previously been reported to mediate electrolyte secretion through calcium-dependent pathways. To access the role of extracellular calcium in regulating ion secretion, the effect of verapamil on each agent was tested; verapamil decreased 5HT-induced delta Isc by 65.2% and histamine response by 33.5%, but had no effect on carbachol-elicited chloride secretion. An additive secretory effect was found upon simultaneous exposure of 5HT and carbachol to the system; no other combination of agents produced a significant additive effect. Findings from this study support previous work which has suggested that multiple calcium pathways may be involved in mediating chloride secretion in mammalian intestine.  相似文献   

7.
The influence of arachidonic acid (AA) on the zinc flux rates of jejunal segments, isolated from streptozotocin-induced diabetic rats injected with saline or with insulin, was investigated using an Ussing chamber technique. Although the zinc flux rates from mucosa-to-serosa (Jms) of normal rats were inhibited by addition of 5 microM AA to the jejunal segment bathing medium (46.4 +/- 5.0 vs 32.6 +/- 4.3 nmol/hr/cm2), AA had no effect on the Jms of diabetic rats either with or without insulin treatment. Induction of diabetes also significantly reduced Jms (46.4 +/- 5.0 vs 22.1 +/- 4.9 nmol/hr/cm2), but 3 day insulin treatment (NPH 8 U/Kg/day subcutaneously) did not reverse this effect (29.2 +/- 5.1 nmol/hr/cm2). Addition of AA to the serosal side did not significantly alter the zinc flux rate from serosa-to-mucosa (Jsm) in either control, diabetic or diabetic rats treated with insulin. The net zinc absorption rate (Jnet) of jejunal segments was decreased in diabetic rats compared to controls (13.2 +/- 3.0 vs -0.7 +/- 2.1 nmol/hr/cm2), but normalization of blood glucose with 3 day insulin treatment did not increase Jnet. Addition of AA was associated with a tendency to increase zinc uptake capacity. This change reached statistical significance in insulin treated diabetic rats. Short-circuit current (Isc) for diabetic rats was increased compared to controls but addition of AA to the mucosal side bathing medium decreased Isc in all groups. The results indicate that the zinc flux rate in the small intestine of streptozotocin-induced diabetic rats is decreased, that zinc uptake capacity of the small intestine does not directly reflect the zinc flux rate across the small intestine, and that AA or one of its metabolites may play a significant role in the control of the zinc flux across the intestinal epithelium.  相似文献   

8.
Toad bladders sacs were placed inside quartz cuvettes. When fura-2 AM was added to the mucosal compartment, low temperature (4 degrees C) almost completely blocked the transepithelial transfer of fluorescence observed at 20 degrees C (20 degrees C = 371 +/- 56, 4 degrees C = 29 +/- 29 fluorescence intensity in arbitrary units (FIAU), excitation at 340 nm, emission at 510 nm). Simultaneously, fluorescence accumulation inside the tissue was significantly higher (20 degrees C = 25 +/- 5, 4 degrees C = 91 +/- 24% increase on basal levels (%IBL)). When fura-2 AM was added to the serosal side, low temperature also reduced the serosal to mucosal transfer (20 degrees C = 149 +/- 36, 4 degrees C = 61 +/- 35 FIAU). Nevertheless, in this situation tissue accumulation, that was significantly higher that the one observed when fura-2 AM was added to the mucosal side, was reduced at low temperature (20 degrees C = 300 +/- 30, 4 degrees C = 48 +/- 7 %IBL). Spectral analysis of the mucosal and serosal compartments indicated that free fura-2 was transferred from the intracellular to the serosal compartment, but not to the mucosal one. These results indicate that fura-2 appears as a useful tool to evaluate the cellular distribution and traffic of polycyclic charged and non-charged molecules.  相似文献   

9.
1. Electrical parameters and transepithelial glucose and galactose transport were determined in vitro across anterior and posterior intestine of the culture fish Sparus aurata. 2. Electrical potential difference (PD) and short-circuit current (Isc) were serosa-positive in anterior intestine, while they were serosa-negative or near zero in posterior intestine. 3. Tissue conductance (Gt) was higher in posterior than in anterior intestine. In both parts it was decreased when the Na ion was omitted in mucosal and serosal reservoirs. 4. Addition of glucose or galactose to the mucosal side of intestine caused an increase in PD and Isc in posterior intestine but did not significantly change PD and Isc in anterior intestine. 5. Isotopic flux of glucose and galactose measurements in short-circuit conditions showed a net active glucose and galactose absorption in posterior intestine, while in anterior intestine active transport of glucose or galactose was not observed. 6. The net transport of glucose and galactose in posterior intestine was decreased to zero in the absence of Na in mucosal and serosal reservoirs or in the presence of ouabain (1 mM) in serosal solution.  相似文献   

10.
Evidence for the participation of conductive and non-conductive (exchange) transmembrane anion pathways in the luminal acidification, alkalinization, and chloride-reabsorptive functions of the turtle bladder is provided from the pattern of Cl- -induced changes in transepithelial electrical parameters of isolated urinary bladders from three groups of donor turtles: control or post-absorptive turtles (those killed 5 days after feeding); acidotic turtles (NH4Cl-loaded); and alkalotic turtles (NaHCO3-loaded). The predominance of each of the three aforementioned transport functions as well as the response to Cl- -addition is altered by the in-vivo electrolyte balance of the turtle. In post-absorptive bladders, which are poised for acidification and Cl- reabsorption, the mucosal and serosal addition of Cl- to Na+-free, (HCO3- + CO2)-containing media increases the negative short-circuiting current (Isc). In acidotic bladders, which are poised for acidification but not Cl- reabsorption, mucosal Cl- addition has no effect on this Isc whereas serosal Cl- addition increases the negative Isc in a manner identical to that observed in the post-absorptive bladders. Alkalotic bladders do not possess an acidification function but instead are poised for Cl- reabsorption and cAMP-dependent electrogenic alkali secretion (positive Isc). In these bladders, serosal Cl- addition is without effect while mucosal Cl- addition produces transient changes in this positive Isc. It is found that these results can be replicated by a model of the turtle bladder in which transmembrane Cl- and HCO3- conductive and exchange paths mediate transepithelial acidification, alkalinization and Cl- reabsorption.  相似文献   

11.
Osmotic water movement across the toad urinary bladder in response to both vasopressin and cyclic AMP was inhibited by 10(-5) to 10(-4) M colchicine on the serosal but not on the mucosal side. This inhibitory effect was found to be time- and dose-dependent. Colchicine alone did not change basal osmotic flow and a baseline of the short-circuit current (Isc) and also did not affect a vasopressin-induced rise of the Isc. The inhibitory effect was not prevented by the addition of pyruvate. The osmotic water movement produced by 360 mM Urea (mucosal), 360 mM mannitol (serosal) or 2 mug/ml amphotericin B (mucosal), was not affected by 10(-4) M colchicine. These results suggest that colchicine inhibits some biological process subsequent to the formation of cyclic AMP except a directional cytoplasmic streaming process where microtubules may be involved.  相似文献   

12.
Ion transport across cat and ferret tracheal epithelia   总被引:3,自引:0,他引:3  
Sheets of trachea from ferret and cat were mounted in Ussing chambers and continuously short circuited. Under resting conditions, in both the cat and ferret there was little or no Cl secretion, and Na absorption accounted for most of the short-circuit current (Isc). Ouabain (10(-4) M, serosal bath) reduced Isc to zero in 30-60 min. This decline was matched by a decrease in net Na absorption. Amiloride (10(-4) M, luminal bath) caused a significant decrease in Isc and conductance (G) in both species. Bumetanide (10(-4) M, serosal bath) had negligible effects on Isc and G. In both species, isoproterenol increased Isc by stimulating Cl secretion. Methacholine induced equal amounts of Na and Cl secretion, with little change in Isc. In the cat, prostaglandins E2 and F2 alpha and bradykinin increased Isc, responses which were abolished in Cl-free medium. In open-circuited cat tissues, Na flux from the serosal to mucosal side was measured simultaneously with the secretion of nondialyzable 35S. Prostaglandins E1, E2, and F2 alpha, histamine, bradykinin, methacholine and isoproterenol all increased both Na and 35S-mucin secretion.  相似文献   

13.
Dispersed isolated cells were obtained from human tracheal mucosa by digestion with collagenase. Up to 1.5 X 10(8) cells were obtained per trachea and showed up to 95% viability, as judged by trypan blue exclusion. When grown in culture, the cells formed monolayers after approximately 4 days. Electron microscopy of the monolayers revealed a polarized structure. An apical membrane, containing microvilli and a pronounced glycocalyx, was separated from a relatively unspecialized basolateral membrane by typical tight junctions. Monolayers grown on nucleopore filters showed resistances of 44-1,800 omega. cm2 and transepithelial potential differences of 0.1-7.6 mV. Short-circuit current (Isc) was increased by isoproterenol, prostaglandins E2 and F2 alpha, and bradykinin. The loop diuretic, bumetanide, reduced Isc when added to the basolateral (serosal) side but had no effect from the apical (mucosal) side of the monolayers. Furosemide and MK-196 also inhibited Isc. Mucosal amiloride inhibited Isc. Serosal amiloride or mucosal ouabain had no effect on Isc. Serosal ouabain brought Isc to zero after approximately 15 min.  相似文献   

14.
The ability of several opioids in potentiating the synaptic activation of CA1 pyramidal cells in the rat hippocampal slice were compared. Morphine and the opioid peptides, (D-ala2, D-leu5)-enkephalin (DADL), morphiceptin, beta-endorphin, and Tyr-D-Ser-Gly-Phe-Leu-Thr (DSThr) caused a concentration-dependent, naloxone-reversible shift to the left in the input-output (IO) curve constructed by plotting the population spike as a function of the field EPSP. These opioids then produced an increase in the size of the population spike while leaving the EPSP unaffected. In contrast, the kappa agonist prototype, ethylketazocine, had no effect on the IO curve when perfused in concentrations up to 10 microM. The rank order of potency for the opioids in the CA1 region of the hippocampus was DADL greater than DSThr greater than beta-endorphin greater than morphiceptin greater than morphine much greater than ethylketazocine. Thus, opioids that are more specific for delta opiate receptors were the most potent and mu receptor agonists, the least potent in this action. Taken together with previous studies suggesting that morphine and DADL may interact with a common opiate receptor in the CA1 region, the results are consistent with the notion that these epileptiform effects may be primarily mediated by delta opiate receptors in this area although the potency of morphiceptin indicates that mu receptors play some role in this effect.  相似文献   

15.
ATP in the extracellular medium is known to stimulate Ca uptake into avian intestinal epithelial cells. We have now demonstrated a similar effect of ATP in mammalian intestinal epithelial cells and have further characterized this effect. Exogenous ATP increased 45Ca uptake 2-6 fold in isolated rat small intestinal epithelial cells, with a maximal effect at 1 mM and an ED50 of 290 microM. A strict structural requirement for nucleotide-stimulated 45Ca uptake was observed. ADP was much less effective than ATP and gamma-thio-ATP, and 5'-AMP, cyclic AMP, adenosine, non-adenine nucleotides, non-hydrolyzable ATP analogs and ATP analogs with ring substitutions at the 8 position were inactive. Prenylamine (100 microM) completely inhibited ATP-stimulated 45Ca uptake, while verapamil (100 microM) had only a small effect. In the intact intestine, ATP increased short-circuit current (Isc) when added to the mucosal side of the tissue. This effect was reduced by 10 microM and abolished by 100 microM prenylamine. The effect of ATP on Isc was markedly reduced in Cl-free solutions and in reduced-Ca solutions. Serosal and mucosal addition of the nonhydrolyzable ATP analog, beta, gamma-methylene-ATP, and serosal addition of ATP had little or no effect on Isc. The similarities between the effects of ATP in isolated cells and in the intact intestine suggest that the effect of ATP on Isc may be at least partially mediated through stimulation of Ca uptake into the epithelial cells.  相似文献   

16.
The oligopeptides beta- and delta O-endorphin were isolated from porcine and bovine pituitary respectively. Their opiate activity was determined in the guinea pig ileum and compared to that of the pentapeptide methionine-enkephalin and morphine. The rank order of opioid activity was found to be: morphine greater than beta-endorphin = Met-enkephalin greater than delta O-Endorphin which lacks the four C-terminal amino acids of beta-endorphin displayed 60% of the activity of beta-endorphin. These results indicate, that C-terminal amino acids contribute little to the affinity of beta-endorphin for opiate receptors in the guinea pig ileum.  相似文献   

17.
Simultaneous measurements of the transmural potential difference (PD) and the short-circuit current intensity (Isc) in the posterior intestine of the fish Blennius parvicornis were made in normal Ringer and in solutions of different ionic composition. The ouabain effects on these two parameters were also tested in normal Ringer solution. The absence of K+ from the Ringer solution on both the mucosal and serosal sides has no apparent effect on the PD and Isc within the first 15 min, but it makes them null after 30 min. When Na+ is substituted in both compartments, using Tris as substitute, a serosal negativity increase is initially observed, but it gradually decreases to zero after 30 min of experimentation. Similarly the PD and Isc drop to zero in the absence of Cl- (sulfate as substitute). Ouabain diminishes the serosa negative potential difference to zero after 30 min presenting a lineal relation to the Isc. A likely transport mechanism for Cl- dependent on the Na+ - K+ pump, is discussed.  相似文献   

18.
The regulation of bile acid transport in rat ileum was studied in vitro using the adenylate cyclase stimulator forskolin, or 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Forskolin 20 microM as well as 100 microM IBMX enhanced mucosal cyclic AMP to 3-fold the control levels. As a physiological response, net fluid absorption in everted ileal sacs was reduced. Taurocholate (10-500 microM) transfer in everted perfused segments of rat ileum was measured using a three compartment dual label method suitable for measuring active transport. Transport asymmetry with absorption exceeding its counterflux by 26-fold, was measured at 500 microM taurocholate. Forskolin increased absorption of taurocholate still further, by 68%, and reduced the serosal to mucosal flux. Enhanced intracellular accumulation of taurocholate indicated a stimulatory action of forskolin on active transport at the mucosal brush-border membrane. In uptake studies, accumulation of taurocholate was enhanced by 100 microM IBMX also. Forskolin-induced uptake stimulation could also be shown for chenodeoxycholate and cholate. In the presence of the neuronal blocker tetrodotoxin, uptake stimulation was still effective. Results indicate that the ileal bile acid transporter is included within the group of sodium-dependent cotransporters of the rat small intestine which are subject to a cyclic AMP-related stimulation at the mucosal cellular level.  相似文献   

19.
Neuropeptide modification of chloride secretion in guinea pig distal colon   总被引:3,自引:0,他引:3  
This study examined the effects of electrically stimulating submucosal neurons in the guinea pig isolated distal colonic mucosa and determined the effects of several peptides that are present in these neurons. Electrical field stimulation of muscle-stripped segments of guinea pig distal colonic mucosa, set up in Ussing flux chambers, evoked an increase in short-circuit current (Isc), of 371 +/- 31 MicroA.cm-2. The response to electrical stimulation was abolished by tetrodotoxin and significantly reduced by serosal furosemide. Atropine reduced, but did not abolish, the neurally evoked response. Addition of neuropeptide Y and galanin to the serosal bath had no effect on baseline Isc, but both evoked a concentration-dependent decrease in the neurally evoked secretory response. Vasoactive intestinal polypeptide evoked a concentration-dependent increase in basal (unstimulated) Isc that was reduced by furosemide and unaltered by tetrodotoxin. Neuropeptide Y, but not galanin, significantly reduced the secretory responses to vasoactive intestinal polypeptide and bethanechol. Somatostatin 201-995 and human calcitonin gene-related peptide had no effect on basal Isc nor did either alter the neurally evoked response. These results suggest that acetylcholine and non-cholinergic neurotransmitter(s) stimulate chloride secretion in the guinea pig distal colonic mucosa. This neurosecretory response may be modulated by neuropeptide Y and galanin that are found within submucosal neurons.  相似文献   

20.
J G Pfaus  B B Gorzalka 《Peptides》1987,8(2):309-317
The effects of opioid peptides that are highly selective ligands for mu receptors (morphiceptin). delta receptors (delta-receptor peptide), kappa receptors (dynorphin 1-9), and the mu/delta complex (beta-endorphin), were tested on lordosis behavior in ovariectomized rats primed with estrogen and progesterone. Intracerebroventricular infusions of beta-endorphin or morphiceptin both inhibited and facilitated lordosis in a dose-dependent fashion whereas all doses of delta-receptor peptide facilitated lordosis. Dynorphin 1-9 had no significant effect at any dose, although a trend toward increased lordosis quotients was observed 30 min after infusion. The effects of beta-endorphin, morphiceptin, and delta-receptor peptide were reversed with naloxone, although naloxone alone had no effect on lordosis behavior. These results indicate that the specific activation of opioid receptor subtypes differentially affects lordosis behavior. It appears that binding to high-affinity mu 1 receptors exerts an inhibitory influence on lordosis, whereas binding to low-affinity mu 2 receptors or delta receptors exerts a facilitatory influence. Binding to kappa receptors does not appear to affect lordosis behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号