首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Mycoplasma contamination of cell lines is one of the major problems in cell culturing. About 15-35% of all cell lines are infected with a limited number of mycoplasma species of predominantly human, swine, or bovine origin. We examined the mycoplasma contamination status in 495 cell cultures by polymerase chain reaction (PCR) assay, microbiological culture method, and deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization, and in 103 cell cultures by PCR and DNA-RNA hybridization, in order to determine the sensitivity and specificity of the PCR assay in routine cell culture. For those two cohorts, results for the three or two assays were concordant in 92 and 91% of the cases, respectively. The sensitivity (detection of true positives) of this PCR detection assay was 86%, and the specificity (detection of true negatives) was 93%, with positive and negative predictive values (probability of correct results) of 73 and 97%, respectively. PCR defined the mycoplasma status with 92% accuracy (detection of true positives and true negatives). The mycoplasma contaminants were speciated by analyzing the PCR amplification fragment using several restriction enzymes. Most of the cultures (47%) were infected with Mycoplasma fermentans, followed by M. hyorhinis (19%), M. orale (10%), M. arginini (9%), Acholeplasma laidlawii (6%), and M. hominis (3%). To sum up, PCR represents a sensitive, specific, accurate, inexpensive, and quick mycoplasma detection assay that is suitable for the routine screening of cell cultures.  相似文献   

2.
A PCR assay was developed to monitor rFVIII production fermenters for mycoplasma contamination. The method uses a simple extraction procedure followed by a qualitative “touchdown” (TD) PCR protocol with primers specific to the 16S rRNA gene. The method has the capacity to detect a wide range of mycoplasma species. Validation was performed according to ICH guidelines and confirmed a limit of detection of between 579 and 1715 mycoplasma genome copies spiked per ml of sample, and a 1000–10,000-fold greater specificity compared to Gram-positive bacteria. In a comparability study, it was comparable in sensitivity to the current FDA-recommended broth and agar culture-based method down to one colony forming unit (cfu)/ml. The method was validated for its intended use as a replacement for culture-based mycoplasma detection during routine fermenter monitoring. Regulatory approvals for the method have been obtained in many of the major regions and activities are ongoing to address agency concerns regarding the comparative limit of detection of the method to culture-based assays.  相似文献   

3.
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert® assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert® mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert®, indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.  相似文献   

4.
The use of animal and plant derived raw materials in mammalian cell culture processes may provide a possible route of entry for adventitious contaminants such as mycoplasma. Mycoplasma contaminations of cell culture represent a serious challenge to the production of biotechnology derived therapeutics. The slow growing nature of mycoplasma can disguise their infection of cultures since cells may continue to proliferate, though at reduced levels and with lesser output of engineered protein. Rapid identification of mycoplasma contaminated cell cultures and materials enables a faster response time to prevent the spread of the contamination. We describe here the comparison of different mycoplasma detection methods: two nucleic acid-based technologies, the standard mycoplasma culture procedure, and a hybrid culture-quantitative PCR assay. In this study, a cell line infected with two species of mycoplasma was used to compare the different detection methods. Our data demonstrates that the two nucleic acid-based techniques are robust methods for detection of mycoplasma and have similar detection capability. In contrast, no mycoplasma was detected in the standard culture assay or in a hybrid culture-quantitative PCR assay. This shows a potential limitation of the culture assay that relies on the ability of mycoplasma to grow in broth media.  相似文献   

5.
Uphoff CC  Drexler HG 《Human cell》1999,12(4):229-236
Mycoplasma contamination is still one of the main problems in using cell cultures in biological and medical research and in the production of bioactive substances, because mycoplasma can alter nearly all parameters and products of the cell. They can persist undetected in the culture if no special detection methods are applied. In recent years, the PCR technology has become a commonly used method to analyze genomic DNA and the expression of genes, with both high specificity and sensitivity. This technique can be effectively employed for the detection and even the identification of mycoplasma contaminations in cell cultures applying primers complementary to the 16S rDNA region. Although this technique, once established, is characterized by simplicity and speed, PCR is still a complex process and its sensitivity and specificity can be influenced by a number of different parameters, e.g. inhibiting compounds originating from the preparation process of the DNA, RNA or cDNA, contamination of the solutions with PCR products, and the selection of a primer pair which does not cover all the mycoplasma species occurring in cell cultures. Thus, adequate controls have to be included to obtain reliable results. The present review examines the use of different primers of the 16S rDNA region including their specificity, the sensitivity applying various DNA or RNA preparation procedures, and the methods to detect finally the amplicons. In conclusion, basic nucleic acid preparation and PCR product detection methods offer a simple, fast and reliable technique for the examination of mycoplasma contaminations in cell cultures, provided that the indispensable control assays are implemented.  相似文献   

6.
7.
Mycoplasma contamination in cell culture is a serious setback to cell culturists across the world with a very high rate of reported occurrence particularly because of difficult early detection. Out of a variety of detection methods known, the double-step nested polymerase chain reaction (PCR)-based detection of mycoplasma in cell culture has been critically viewed upon because of chances of producing reliable results. A nested PCR technique, described to detect a large range of cell-culture-contaminating mycoplasma species, with greater sensitivity to detect as low a contamination as a few organisms, was compared with the results from two cytological techniques employed in tandem. These are DNA staining using Hoechst, the gold standard, and an immunofluorescent assay using a highly specific monoclonal antibody. The study undertaken on randomly collected cell cultures revealed a false-negative and several false-positive results in comparison to the cytological methods employed. The observations were particularly more unambiguous with the immunofluorescent assay employed in the study while simultaneously employed Hoechst staining serving as an indicator of bacterial contamination. There is a general apprehension that genus-specific PCR approaches could be associated with inaccurate outcome and only species-specific PCRs may be satisfactory in routine screening for mycoplasma contamination in cell cultures. At this juncture, it may be suggested that caution must be exercised while adopting the two-step nested PCR-based detection approaches, and the simultaneous employment of cytological methods used in this investigation could prove to be practicable in the proper interpretation of results.  相似文献   

8.
细胞培养中支原体污染的PCR检测   总被引:3,自引:0,他引:3  
根据支原体16s rDNA序列,选择RemyTeyssou设计的三条寡核苷酸链,组成两套引物:P_(1-2a)能检测出细胞培养中常见的各种支原体,P_(1-2b)能检出无胆甾原体。反应可检出体系中10CFV的菌体。此法先用于对实验室人为污染支原体Vero细胞的检测,后与DNA 染色法和培养法比较,检测了49份生物样品,其中24份传代细胞,PCR检测的阳性率为58%,DNA染色法为42%,培养法为33%;三者的灵敏性比较,PCR可检出10~(-3)稀释度的阳性样品,高于其他两种方法。此PCR方法快速、灵敏、特异,适用于细胞培养中支原体污染的检测。  相似文献   

9.
Mycoplasma contamination in cell culture is considered as serious problem in the manufacturing of biological products. Our goal in this research is to find the best standard and rapid method with high sensitivity, specificity, accuracy and predictive values of positive and negative results for detection of mycoplasma contamination in cell cultures of the National Cell Bank of Iran. In this study, 40 cell lines suspected to mycoplasma contamination were evaluated by three different methods: microbial culture, enzymatic mycoalert® and molecular. Enzymatic evaluation was performed using the mycoalert® kit while in the molecular technique, a universal primer pair was designed based on the common and fixed 16SrRNA ribosomal sequences used. Mycoplasma contaminations in cell cultures with molecular, enzymatic and microbial culture methods were determined as 57.5, 52.5 and 40 %, respectively. These results confirmed the higher rate of sensitivity, specificity and accuracy for the molecular method in comparison with enzymatic and microbial methods. Polymerase chain reaction (PCR) assay based on fixed and common sequences in the 16SrRNA, is a useful valuable and reliable technique with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products. The enzymatic mycoalert® method can be considered as a substitution for conventional microbial culture and DNA staining fluorochrome methods due to its higher sensitivity, specificity and speed of detection (<20 min).  相似文献   

10.
Summary A nested polymerase chain reaction (PCR) was used to detect and identify mycoplasma contaminants in viral stocks. The results of the PCR assay proved to be a sensitive and accurate indicator of the true status of the stock tested. Those samples positive by agar culture or Hoechst stain were also positive by PCR. Those samples that were inconclusive by Hoechst stain (10.05%) could be clearly determined to be mycoplasma positive or negative by PCR. The PCR assay also detected those fastidious species of mycoplasma that gave false negative results by the direct culture method. In many respects the PCR-based mycoplasma detection method described is superior to the agar culture and Hoechst staining detection methods. In this study, the PCR assay detected substantially more mycoplasma-positive viral stocks than did the agar culture assay. Due to its speed, sensitivity, and reliability, the PCR assay is of particular value in monitoring the process of removing mycoplasma from contaminated stocks. Furthermore, the PCR amplification products can be analyzed by restriction analysis to rapidly identify the species of the mycoplasma contaminating the stock tested.  相似文献   

11.
The suitability of a 16S rRNA-based mycoplasma group-specific PCR for the detection of mycoplasma contamination in cell cultures was investigated. A total of 104 cell cultures were tested by using microbiological culture, DNA fluorochrome staining, DNA-rRNA hybridization, and PCR techniques. A comparison of the results obtained with these techniques revealed agreement for 95 cell cultures. Discrepant results, which were interpreted as false negative or false positive on the basis of a comparison with the results obtained with other methods, were observed with nine cell cultures. The microbiological culture technique produced false-negative results for four cell cultures. The hybridization technique produced false-negative results for two cell cultures, and for one of these cell cultures the DNA staining technique also produced a false-negative result. The PCR may have produced false-positive results for one cell culture. Ambiguous results were obtained with the remaining two cell cultures. Furthermore, the presence of contaminating bacteria interfered with the interpretation of the DNA staining results for 16 cell cultures. For the same reason the hybridization signals of nine cell cultures could not be interpreted. Our results demonstrate the drawbacks of each of the detection methods and the suitability of the PCR for the detection of mycoplasmas in cell cultures.  相似文献   

12.
The AG-9600 AmpliSensor Analyzer is an automated fluorescence-based system for detection of polymerase chain reaction (PCR) products. The principle of the AmpliSensor PCR assay involves amplification-mediated disruption of a fluorogenic DNA signal duplex (AmpliSensor) that is homologous to a target sequence within a 284-bp amplified fragment of the Salmonella invA gene. Since the assay is homogenous, the data can be obtained by direct measurement of fluorescence of the amplification mixture. The accumulation of the amplified product, reflected by the fluorescence index, is monitored cycle by cycle by the AG-9600 Analyzer. The detection limit of the assay was less than 2 colony-forming units (cfu) per PCR reaction using a pure culture of Salmonella typhimurium. In post-spiking experiments in which Salmonella was added to the overnight pre-enriched samples (chicken carcass rinses, ground beef, ground pork and raw milk), the detection limit of the assay was 2–6 cfu per PCR reaction. In pre-spiking experiments in which Salmonella was added to the samples prior to overnight pre-enrichment, the detection limit was less than 3 cfu per 25 g or 25 ml of food. The assay was up to 2 orders of magnitude more sensitive than detection by ethidium bromide-stained agarose gel electrophoresis. To further evaluate assay performance, 54 naturally contaminated chicken carcass rinses, 65 raw milk and six ground pork samples were tested in the study. Thirty-eight Salmonella- positive samples confirmed by the Modified Semi-solid Rappaport-Vassiliadis (MSRV) culture assay were found positive using the AmpliSensor assay. Two chicken carcass rinses found positive using the assay were MSRV-negative. In addition, relative quantification using the AmpliSensor assay was linear up to 3 logs of initial target concentration in artificially contaminated food samples.  相似文献   

13.
Summary We have developed a simple method for rapid detection of mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain reaction (PCR). To detect eight common contaminant mollicutes, including Mycoplasma (M. arginini, M. fermentans, M. orale, M. hyorhinis, M. hominis, M. salivarium, M. pirum) and Acholeplasma laidlawii, four primers were prepared based on the 23S rRNA regions. Using these primers and a minimum of 100 fg of mycoplasma genomic DNA, the 23S rRNA regions of these eight mycoplasma species were consistently amplified by real-time PCR. In contrast, no specific specific amplification product was observed using DNA templates prepared from various mammalian cell lines. Frozen and cultured samples of several cell lines were tested for mycoplasma contamination to evaluated the utility of this method. Of 25 samples that tested positive for mycoplasma by Hoechst staining, which requires two passages of cell cultures started from frozen samples, mycoplasma was detected by real-time PCR in 24 samples of cell extracts prepared directly from frozen samples. When cultured samples were used for this assay, the accuracy of the diagnoses was further improved. Thus, this technique, which is simple, rapid, and sensitive enough for practical application, in suitable for handling many samples and for routine screening for mycoplasma contamination of cell cultures.  相似文献   

14.
Summary The polymerase chain reaction (PCR) method was used to detect mycoplasma contamination in a panel of 42 continuous cell lines. According to the microbiological cultivation assay on agar, 29 cell lines were chronically infected and 13 cell lines were negative. Sets of outer and inner primers (nested double-step PCR) were applied which anneal to DNA sequences coding for conserved regions of the 16S rRNA. These oligonucleotides allow for the amplification of DNA regions found in at least 25 mycoplasma species (including the ones most commonly found in cell cultures), but do not cross-hybridize with DNA from eukaryotic cells. Mycoplasma-positive cell lines showed distinctive bands in ethidium bromide-stained gels, both after the first round of amplification as well as after the second PCR; all agar-negative cell lines were also unambiguously negative in the PCR assay. Thus, neither false-positive nor false-negative results occurred. Provided that the proper PCR working conditions are scrupulously observed, the PCR amplification has several outstanding advantages: high sensitivity, specificity, reliability, objectivity, speed, and simplicity.  相似文献   

15.
A polymerase chain reaction (PCR) assay with two nested pairs of primers selected from conserved sequences within a 2.3 kb randomly cloned DNA fragment from the Salmonella typhimurium chromosome was developed. The nested PCR assay correctly identified 128 of a total of 129 Salmonella strains belonging to subspecies I, II, IIIb and IV. One strain of Salm. arizona (ssp. IIIa) tested negative. No PCR products were obtained from any of the 31 non-Salmonella strains examined. The sensitivity of the assay was 2 cfu, as determined by analysis of proteinase K-treated boiled lysates of Salm. typhimurium. The performance of the assay was evaluated for environmental water, sewage and food samples spiked with Salm. typhimurium. Water and sewage samples were filtered and filters were enriched overnight in a non-selective medium. Prior to PCR, the broth cultures were subjected to a rapid and simple preparation procedure consisting of centrifugation, proteinase K treatment and boiling. This assay enabled detection of 10 cfu 100 ml(-1) water with background levels of up to 8700 heterotrophic organisms ml(-1) and 10000 cfu of coliform organisms 100 ml(-1) water. Spiked food samples were analysed with and without overnight enrichment in a non-selective medium using the same assay as above. Nested PCR performed on enriched broths enabled detection of <10 cfu g(-1) food. Variable results were obtained for food samples examined without prior enrichment and most results were negative. This rapid and simple assay provides a sensitive and specific means of screening drinking water or environmental water samples, as well as food samples, for the presence of Salmonella spp.  相似文献   

16.
A 501 bp caf1 gene fragment and a 443 bp of pla gene fragment carried by 100 kb (pFra) and 10 kb (pPst) species-specific extrachromosomal replicons, respectively, were used as targets to study the conditions under which DNA amplification by polymerase chain reaction (PCR) may be applied to detect and identify Yersinia pestis DNA in cell lysates of pure cultures and biological samples. The sensitivity limit of PCR with the crude cell lysates of Y. pestis EV was estimated as 10–50 cfu in reaction mixture. When target Y. pestis EV cells were mixed with fresh blood of white mice, which contained 0.4% potassium citrate, the PCR detection level varied from 400 to 100 cfu ml-1 of blood depending on the method used for preparing the sample. In our tests PCR was effective for the detection of yersinia in the blood of white laboratory mice experimentally infected with virulent Y. pestis KM638 strain. This method can be considered convenient for routine detection and identification of Y. pestis.  相似文献   

17.
A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2-µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony-forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.  相似文献   

18.
鼠伤寒沙门氏菌多重PCR检测方法的研究   总被引:1,自引:0,他引:1  
分别根据沙门氏菌16S rRNA、质粒毒力基因spvC、致病基因invB、fimA序列设计4对引物,对沙门氏菌株及非沙门氏株菌基因组DNA进行多重PCR检测。结果该方法能检测出6.3×102 个cfu/ml纯培养的沙门氏菌,人工染菌食品模拟检测结果显示,熟鸡肉初始含菌量为17cfu/g、全脂奶粉为11cfu/g、生牛肉为13.6cfu/g,经过8h增菌,PCR检测为阳性。该体系能鉴定产生多种毒力因子的沙门氏菌,特异性强、敏感性高,为检测和鉴定沙门氏菌株提供了一个新方法。  相似文献   

19.
A fast and simple method to detect bacterial and especially mycoplasma contamination in tissue culture by means of polymerase chain reaction (PCR) amplification is described. In a first step the universal primer pairs P1/P2 (190-bp fragment) and P3/P4 (120-bp fragment) directed to different conserved parts of the prokaryotic 16S rRNA gene are used. A positive signal after amplification on cell culture DNA with these primers provides an indication of bacterial infection. Using the internal primers IP1, IP3 and IP'3 complementary to a part of the V4 and V8 variable regions of the 16S rRNA gene, in combination with a universal primer, cultures contaminated with mycoplasma could be identified. Six mycoplasma species, typical contaminants in tissue cultures, were investigated: Mycoplasma orale, M. fermentans, M. arginini, M. hyorhinis, M. hominis and Aeromonas laidlawii. This mycoplasma test is an easy, specific and sensitive assay which should be extremely useful in any tissue culture setting.  相似文献   

20.
Detection of mycoplasma contaminations by the polymerase chain reaction   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) has been used for the general detection ofMollicutes. 25Mycoplasma andAcholeplasma species were detected including important contaminants of cell cultures such asM. orale, M. arginini, M. hyorhinis, M. fermentans, A. laidlawii and additional human and animal mycoplasmas. PCR reactions were performed using a set of nested primers defined from conserved regions of the 16S rRNA gene. The detection limit was determined to be 1 fg mycoplasma DNA, which is equivalent to 1–2 genome copies of the 16S rRNA coding region. The identity of the amplification products was confirmed by agarose gel electrophoresis and restriction enzyme analysis. DNA from closely and distantly related micro-organisms did not give rise to specific amplification products. The method presented here offers a much more sensitive, specific and rapid assay for the detection of mycoplasmas than the existing ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号