首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methyltransferase, which catalyzes the methylation of luteolin (Km, 16 μM) using S-adenosyl-l-methionine as the methyl donor, has been purified about 38-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The following 3,4-dihydroxy phenolic compounds were also methylated: luteolin 7-O-glucoside (Km, 28 μm), quercetin (Km, 35 μm), eriodictyol (Km, 75 μm), 5-hydroxyferulic acid (Km, 227 μm), dihydroquercetin (Km, 435 μm), and caffeic acid (Km, 770 μm). Rutin and quercetin 3-O-glucoside were poor substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of p-coumaric acid, m-coumaric acid, ferulic acid, isoferulic acid, sinapic acid, apigenin, or naringenin. While the isoflavones biochanin A and daidzein did not serve as substrates, texasin (6,7-dihydroxy-3′-methoxyisoflavone) was methylated (Km, 35 μm). The methylation of caffeic acid and quercetin showed a pH optimum of 8.6–8.9. The enzyme required Mg2+ ions for maximum activity (approximately 1 mm) and could be totally inhibited by EDTA (10 mm). The Km for S-adenosyl-l-methionine was 11 μm. S-Adenosyl-l-homocysteine inhibited the methylation of luteolin by S-adenosyl-l-methionine.  相似文献   

2.
The cytochrome P-450K containing monooxygenase system of rat kidney cortex microsomes catalyzes the hydroxylation of various saturated fatty acids of medium chain length to the corresponding ω- and (ω-1)-hydroxy derivatives. The hydroxylation activity, as well as the ratio between the two hydroxylated products, vary with the carbon chain length of the fatty acid. Optimal hydroxylation activity is observed with myristic acid which yields the 13- and 14-hydroxylated products at a ratio of about 1. The ω/(ω-1)-hydroxylation ratio decreases with increasing carbon chain length of the fatty acid. On the other hand, with lauric acid as a substrate the ratio between ω- and (ω-1)-hydroxylation does not change significantly with varying time of incubation or substrate concentration, or incubation in a medium containing D2O or after induction of enhanced hydroxylation activity by starvation of the animals. Furthermore, 12-hydroxylauric acid and capric acid—which is almost exclusively ω-hydroxylated by rat kidney cortex microsomes—inhibit both 11- and 12-hydroxylation of lauric acid to a similar extent whereas 11-hydroxylauric acid does not seem to inhibit either 11- or 12-hydroxylation.C10-C16 fatty acids produce the type I spectral change upon addition to rat kidney cortex microsomes and seem to interact with similar amounts of the cytochrome P-450K present in these particles. In agreement with the metabolic studies, 12-hydroxylauric acid interacts with cytochrome P-450K giving rise to a reverse type I spectral change, whereas 11-hydroxylauric acid does not produce an observable spectral change. Finally, results of binding experiments with a series of derivatives of dodecane suggest that type I binding to cytochrome P-450K requires, besides a proper chain length, the presence of a carbonyl group together with an electron pair on a neighboring atom at the end of the carbon chain. A chain length of 14 carbon atoms seems to be optimal and it is suggested that this chain length may correspond to the distance between a possible binding site and the catalytic site of cytochrome P-450K  相似文献   

3.
An O-methyltransferase which catalyses the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified ca 70-fold from root nodules of alfalfa. The enzyme also catalysed the methylation of 5-hydroxyferulic acid. Chromatography on 1,6-diaminohexane agarose (AH-Sepharose-4B) linked with S-adenosyl-l-homocysteine (SAH) gave 35% recovery of enzyme activity. The Km values for caffeic acid and S-adenosyl-l-methionine were 58 and 4.1 μM, respectively. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine with a Ki of 0.44 μM. The MW of the enzyme was ca 103 000 determined by gel filtration chromatography.  相似文献   

4.
Allylic hydroxylated derivatives of the C18 unsaturated fatty acids were prepared from linoleic acid (LA) and conjugated linoleic acids (CLAs). The reaction of LA methyl ester with selenium dioxide (SeO2) gave mono-hydroxylated derivatives, 13-hydroxy-9Z,11E-octadecadienoic acid, 13-hydroxy-9E,11E-octadecadienoic acid, 9-hydroxy-10E,12Z-octadecadienoic acid and 9-hydroxy-10E,12E-octadecadienoic acid methyl esters. In contrast, the reaction of CLA methyl ester with SeO2 gave di-hydroxylated derivatives as novel products including, erythro-12,13-dihydroxy-10E-octadecenoic acid, erythro-11,12-dihydroxy-9E-octadecenoic acid, erythro-10,11-dihydroxy-12E-octadecenoic acid and erythro-9,10-dihydroxy-11E-octadecenoic acid methyl esters. These products were purified by normal-phase short column vacuum chromatography followed by high-performance liquid chromatography (HPLC). Their chemical structures were characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR). The allylic hydroxylated derivatives of LA and CLA exhibited moderate in vitro cytotoxicity against a panel of human cancer cell lines including chronic myelogenous leukemia K562, myeloma RPMI8226, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cells (IC50 10-75 μM). The allylic hydroxylated derivatives of LA and CLA also showed toxicity to brine shrimp with LD50 values in the range of 2.30-13.8 μM. However these compounds showed insignificant toxicity to honeybee at doses up to 100 μg/bee.  相似文献   

5.
Lauric Acid Exhibits Antifungal Activity Against Plant Pathogenic Fungi   总被引:3,自引:0,他引:3  
This study aimed at examining the effects of the saturated fatty acid lauric acid on mycelial growth of Rhizoctonia solani and Pythium ultimum and on infection of barley seedlings with Blumeria graminis f. sp. hordei. Mycelial growth of R. solani and P. ultimum in agar culture was significantly reduced by lauric acid at concentrations of 100 μm and above, while no fungal growth occurred in liquid culture at concentrations above 50 μm . Application of lauric acid at concentrations ranging from 250 to 1000 μm to barley leaves before or after inoculation with B. graminis f. sp. hordei led to significant reductions in infection. This study provides the first report of the activity of lauric acid against plant pathogenic fungi and indicates the need for investigation of its mechanism of action.  相似文献   

6.
A 3-O-methyltransferase which catalyzes the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified about 60-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The enzyme utilized, in addition to caffeic acid (Km = 133 μM), 5-hydroxyferulic acid (Km = 55 μM), 3,4,5-trihydroxy-cinnamic acid (Km = 100 μM), and protocatechualdehyde (Km = 50 μM) as substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of ferulic acid, of ortho-, meta-, and para-coumaric acids, and of the flavonoid compounds quercetin and luteolin. The methylation of caffeic acid and 5-hydroxyferulic acid showed a pH optimum at 6.5–7.0. No stimulation of the reaction velocity was observed when Mg2+ ions were added. EDTA did not inhibit the reaction. The Km for S-adencsyl-l-methionine was 15 μm. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine (Ki = 6.9 μM).  相似文献   

7.
Anthglutin, a new inhibitor of γ-glutamyl transpeptidase, has been isolated from the cultured medium of Penicillium oxalicum and its structure established as l-γ-l-glutamyl-2-(2-carboxyphenyl)hydrazine. The isolation of anthglutin was achieved by ion-exchange chromatography. Anthglutin inhibited γ-glutamyl transpeptidase specifically and the kinetic analysis of the inhibition showed that anthglutin inhibited the enzyme competitively with regard to the glutamyl donor, γ-glutamyl-p-nitroanilide, and noncompetitively with regard to the glutamyl acceptor, glycylglycine. K1 values were 5.7 μm for the hog kidney enzyme, 18.3 μm for the human kidney enzyme, 13.6 μm for the human liver soluble enzyme, and 10.2 μm for the bound enzyme. After oral administration of [14C]methionine and anthglutin to rats, no effect of anthglutin was observed on the absorption of methionine in the intestine.  相似文献   

8.
Cutinase, a glycoprotein containing O-glycosidically linked carbohydrates, is induced in glucose-grown Fusarium solani f. pisi by cutin hydrolysate. Microsomal preparations from the induced cells catalyzed mannosyl transfer from GDP-mannose to glycolipid and glycoprotein fractions but not into oligosaccharide lipids. Maximal rates of mannosyl transfer into glycolipids and glycoproteins were obtained with 5 mm Mg2+ and 10 mm Mn2+, respectively. Mannosyl transfer into glycolipids and glycoproteins showed pH optima of 8.0 and 7.0, respectively, and both transfers showed an apparent Km of about 2 μm for GDP-mannose. The mannosyl lipid was identified as β-d-mannosyl phosphoryl dolichol by thinlayer and ion-exchange chromatography, as well as by analyses of the products derived from it by acid and base treatments. The fungal microsomal preparation also catalyzed mannosyl transfer from GDP-mannose to exogenous dolichol phosphate. This transfer was stimulated maximally by 0.09% Triton X-100 and showed a pH optimum at pH 8.0. The apparent Km values for dolichol phosphate and GDP-mannose were 120 and 2.3 μm, respectively. The product derived from exogenous dolichol phosphate was identified as β-d-mannosyl phosphoryl dolichol as indicated above. The endogenous mannosyl acceptor lipid from this fungus was isolated by DEAE-cellulose chromatography. Analysis of the p-nitrobenzoyl derivatives of the base hydrolysis products of this acceptor lipid by highperformance liquid chromatography showed that the major components of this dolichol were C95 and C100. The microsomal preparation also catalyzed the transfer of mannose from exogenous mannosyl phosphoryl dolichol to glycoproteins with a pH optimum of 7.5 and an apparent Km of 1.7 μm. Analyses of the β-elimination products of the glycoproteins generated from both GDP-mannose and dolichol phosphoryl mannose showed that single mannosyl residues were transferred to hydroxyl groups of the endogenous proteins. Exogenous cutinase was not glycosylated even after denaturation, sulfitolysis, or removal of carbohydrates by HF hydrolysis. Sodium dodecyl sulfate electrophoresis indicated that cutinase and its possible precursors were among the in vitro glycosylation products. Bacitracin and amphomycin but not tunicamycin inhibited the mannosyl transfer reactions.  相似文献   

9.
A rapid and sensitive assay for the determination of cathepsin A activity is reported. This method is based on fluorimetric detection of a dansylated peptide, 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe, enzymatically formed from the substrate 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe-l-Leu, after separation by high-performance liquid chromatography using a C18 reversed-phase column and isocratic elution. This method is sensitive enough to measure 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe at concentrations as low as 300 fmol, yields highly reproducible results and requires less than 7.0 min per sample for separation and quantitation. The optimum pH for cathepsin A activity was 4.5–5.0. The Km and Vmax values were respectively 14.9 μM and 27.91 pmol/μg/h with the use of enzyme extract obtained from mouse kidney. Cathepsin A activity was strongly inhibited by Ag+, Hg2+, diisopropylfluorophosphate and p-chloromercuriphenylsulphonic acid. Among the organs examined in a mouse, the highest specific activity of the enzyme was found in kidney. The sensitivity and selectivity of this method will aid in efforts to examine the physiological role of this peptidase.  相似文献   

10.
tRNA methylation complexes consisting of S-adenosylmethionine (AdoMet) synthetase, tRNA methylases, and S-adenosylhomocysteine (AdoHcy) hydrolase have been prepared from rat Novikoff hepatoma cells. The existence of the ternary enzyme complex is supported by dissociation and reconstitution of the ternany tRNA methylation complexes. In rat prostate and testis, two isozymes each for AdoMet synthetase and AdoHcy hydrolase are detected. The Km (methionine) values for the two AdoMet synthetases are 3.1 and 23.7 μm and the Km (adenosine) values for the two AdoHcy hydrolases are 0.33 and 1.8 μm. Correspondingly, two groups of methylation complexes are detectable, sedimenting in a sucrose gradient as 7 S and 8 S. The 7 S complexes are composed of AdoMet synthetase and AdoHcy hydrolase with the higher Km values, and the 8 S complexes are composed of the respective isozymes with the lower Km values. tRNA methylation complexes belong to the 8 S group. In hormone-depleted rat prostates and testes following hypophysectomy, the specific activities of AdoMet synthetases, tRNA methylases, and AdoHcy hydrolases are decreased severely, but are restored promptly after administration of testosterone. Thus, methylation enzymes are responsive to the regulation by steroid hormone. AdoHcy hydrolases from hormone-depleted tissues are unstable, and ternary tRNA methylation complexes are easily dissociable into individual activities. The stability of AdoHcy hydrolases is markedly improved by testosterone, and the integrity of ternary tRNA methylation complexes is maintained in the presence of testosterone. These results suggest that AdoHcy hydrolases are the primary target enzymes in adrogen regulation of methylation complexes.  相似文献   

11.
The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher–Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (Tm°) of the coconut oil–additive mixtures estimated by the Hoffman–Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the Tm° depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the Tm° elevation of coconut oil.  相似文献   

12.
Dihydrofolate reductase from soybean seedlings has been purified by agarose-formylaminopterin affinity chromatography. The enzyme is homogeneous as judged by disc gel electrophoresis and immunodiffusion. Analysis by both Sephadex G-200 column chromatography and Sephadex (superfine) G-200 thin-layer gel filtration gives a molecular weight of about 140,000 for the enzyme. Sodium dodecyl sulfate-gel electrophoresis reveals the presence of nonidentical subunits. The enzyme contains nine sulfhydryl groups and is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 5,5-dithiobis(2-nitrobenzoic acid). Folate analogs methotrexate, aminopterin, and formylaminopterin cause potent inhibition of the enzyme, with I50 values (concentration required for 50% inhibition) of 0.25, 0.63, and 1.78 μm respectively. The turnover number of the enzyme is 57. Km values for dihydrofolate and NADPH are 35 and 415 μm, respectively. Dihydrofolate, but not NADPH, affords protection against heat inactivation and the protection constant, Kp (concentration of dihydrofolate at which half the original activity is retained), is 81 μm.  相似文献   

13.
A facile continuous flow-through Candida antarctica lipase B immobilized silica microstructured optical fiber (SMOF) microreactor for application in lipid transformations has been demonstrated herewith. The lipase was immobilized on the amino activated silica fiber using glutaraldehyde as a bifunctional reagent. The immobilized lipase activity in the SMOF was tested calorimetrically by determination of p-nitrophenyl butyrate hydrolysis products. The specific activity of the immobilized lipase was calculated to be 0.91 U/mg. The SMOF microreactor performance was evaluated by using it as a platform for synthesis of butyl laurate from lauric acid and n-butanol in n-hexane and n-heptane at 50 °C, with products identified by gas chromatography–mass spectrometry (GC–MS). Different substrate mole ratios were evaluated, with 1:3, lauric acid:n-butanol showing best performance. Remarkably, percentage yields of up to 99% were realized with less than ∼38 s microreactor residence time. In addition, the SMOF microreactor could be reused many times (at least 7 runs) with minimal reduction in the activity of the enzyme. The enzyme stability did not change even with storage of the microreactor in ambient conditions over one month.  相似文献   

14.
The incubation of [5,6-3H]prostaglandin E1 ([3H]PGE1) with guinea pig kidney cortex microsomes in the presence of NADPH in an atmosphere of air, resulted in chromatographically polar metabolites. The incubation products were treated with base which converted PGE1 derivatives into PGB1 derivatives, with a λmax = 278 nm and the products were analyzed by TLC and high pressure-liquid chromatography (HPLC). Based on UV absorption, mobility on TLC and retention time in HPLC, as compared with authentic compounds, it was concluded that the two polar UV-absorbing peaks in HPLC represented 19-hydroxy-PGB1 (19-OH-PGB1) and 20-hydroxy-PGB1 (20-OH-PGB1). Further identification of the metabolites was obtained by derivatizing the incubation products as methyl esters and t-butyldimethylsilyl ethers, followed by co-injection with similarly derivatized authentic compounds in HPLC and gas chromatography. Finally, the derivatized metabolites were identified by comparing their mass fragmentation with that of similarly derivatized authentic compounds. There was an absolute requirement for NADPH, and NADH did not significantly support the hydroxylation of PGE1. Inhibitors of microsomal monooxygenase (SKF 525A, metyrapone, and cytochrome c) inhibited the hydroxylation of PGE1 by kidney cortex microsomes. By contrast, carbon monoxide at a CO:O2 ratio of 5:1 did not inhibit the hydroxylation of PGE1, pointing to a low or lack of CO sensitivity of the hydroxylation of PGE1. The addition of PGE1 or laurate to guinea pig kidney cortex microsomes elicited Type I spectral changes. The spectral dissociation constant (Ks) for PGE1 was 2.4 × 10?4m. The kinetic constants for 19- and 20-hydroxylations of PGE1 were determined. The KM values for the 19- and 20-hydroxylation pathways were found to be identical, being 3.3 × 10?4m, suggesting that the same enzyme is involved in both hydroxylations; however, the Vmax values for 19-hydroxylation and 20-hydroxylation of PGE1 were 50 nmol/hr and 20.8 nmol/hr respectively. These results demonstrate that PGE1 is a substrate for the kidney cortex microsomal monooxygenase. The similarities and differences of the kidney monooxygenase in the guinea pig with that in the rat are discussed.  相似文献   

15.
Intracellular products of peptide transport were analyzed after thin layer chromatography separation by a fluorescamine labeling procedure. Dipeptides penetrated Pseudomonas aeruginosa via 2 transport systems, one of high affinity with KT values from 1–2 μM, and another one of low affinity (KT about 30 μM). A single transport system assumed tripeptide uptake with KT varying from 10–30 μM, depending on the tripeptide used. Peptides entering the cells were rapidly hydrolyzed into their constitutive amino acids.  相似文献   

16.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

17.
The action of Aspergillus niger on mono- and sesqui-terpenic hydrocarbons, such as carane, 3-carene, α-santalene, and humulene was studied in shake cultures. Carane, Δ3-carene, and humulene proved to be rather resistant to oxygenation by the experimental strain of A. niger. Carene yielded a hydroxyketone, C10H14O2, in poor yields after prolonged fermentation. The sesqui-terpene hydrocarbon, α-santalene, was degraded mainly to an acid, tere-santalic acid. Two hydroxylated products were also obtained from α-santalene, viz., tere-santalol and an alcohol, C15H24O.  相似文献   

18.
Antibody against NADPH-cytochrome c reductase inhibited the NADPH-dependent omega and penultimate hydroxylation of lauric acid by microsomes from kidney cortex and liver of rats, but did not inhibit the NADH-dependent hydroxylation of lauric acid. By contrast, an antibody against cytochrome b5 inhibited both the NADH and the NADPH-dependent hydroxylation of lauric acid by these microsomal preparations. Although the antibody against cytochrome b5 did not inhibit NADPH-oxidation, this lack of inhibition could not be attributed to the presence of an endogenous substrate or an uncoupling inhibitor in the antibody preparation. These findings suggest that NADPH-cytochrome c reductase mediates the NADPH-dependent hydroxylation of lauric acid but not its NADH-dependent hydroxylation, whereas cytochrome b5 plays a role in both the NADPH and the NADH-dependent hydroxylation of the fatty acid.  相似文献   

19.
An easy, rapid and selective method for the determination of rofecoxib in human plasma is presented. The analytical technique is based on reversed-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry (Finnigan Mat LCQ ion trap). The retention time of rofecoxib was 1.2 min. The method has been validated over a linear range from 1 to 500 μg/l using celecoxib as internal standard. After validation, the method was used to study the pharmacokinetic profile of rofecoxib in 12 healthy volunteers after administration of a single oral dose (12.5 mg). The presented method was sufficient to cover more than 95% of the area under the curve. The pharmacokinetic characteristics (mean±SD) were tmax: 2.4±1.0 h, cmax: 147±34 μg/l, AUC: 2038±581 μg h/l and t1/2: 11.3±2.1 h.  相似文献   

20.
Small intact frog skeletal muscles were exposed to radioactively labeled adenosine 3′,5′-cyclic monophosphate (cAMP) during incubation in frog Ringer's solution buffered with Tris (RT). The fate of the nucleotide was followed by measuring the products in the incubation media. Paper chromatography was used for the separation and identification of these products; the amounts were measured using liquid scintillation spectrometry. It was found that cAMP was degraded to AMP, which was then converted to IMP and, to some extent, inosine. The degradation of cAMP to AMP was markedly inhibited by theophylline (10 mM) suggesting the presence of cAMP phosphodiesterase activity at the muscle surface. Kinetic studies of enzyme activity in situ revealed two apparent Km values: 0.33 μm and 55 μm. Insulin (0.3 unit/ml) increased the phosphodiesterase activity at concentrations of cAMP ranging from 2 to 17 μm. The possible roles of the surface phosphodiesterase were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号