首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How p53 binds DNA as a tetramer.   总被引:8,自引:1,他引:7       下载免费PDF全文
K G McLure  P W Lee 《The EMBO journal》1998,17(12):3342-3350
The p53 tumor suppressor protein is a tetramer that binds sequence-specifically to a DNA consensus sequence consisting of two consecutive half-sites, with each half-site being formed by two head-to-head quarter-sites (--><-- --><--). Each p53 subunit binds to one quarter-site, resulting in all four DNA quarter-sites being occupied by one p53 tetramer. The tetramerization domain forms a symmetric dimer of dimers, and two contrasting models have the two DNA-binding domains of each dimer bound to either consecutive or alternating quarter-sites. We show here that the two monomers within a dimer bind to a half-site (two consecutive quarter-sites), but not to separated (alternating) quarter-sites. Tetramers bind similarly, with the two dimers within each tetramer binding to pairs of half-sites. Although one dimer within the tetramer is sufficient for binding to one half-site in DNA, concurrent interaction of the second dimer with a second half-site in DNA drastically enhances binding affinity (at least 50-fold). This cooperative dimer-dimer interaction occurs independently of tetramerization and is a primary mechanism responsible for the stabilization of p53 DNA binding. Based on these findings, we present a model of p53 binding to the consensus sequence, with the tetramer binding DNA as a pair of clamps.  相似文献   

2.
3.
The physiologically active form of p53 consists of a tetramer of four identical 393-amino-acid subunits associated via their tetramerization domains (TDs; residues 325-355). One in two human tumors contains a point mutation in the DNA binding domain (DBD) of p53 (residues 94-312). Most existing studies on the effects of these mutations on p53 structure and function have been carried out on the isolated DBD fragment, which is monomeric. Recent structural evidence, however, suggests that DBDs may interact with each other in full-length tetrameric forms of p53. Here, we investigate the effects of tumorigenic DBD mutations on the folding of p53 in its tetrameric form. We employ the construct consisting of DBD and TD (amino acids 94-360). We characterize the stability and conformational state of the tumorigenic DBD mutants R248Q, R249S, and R282Q using equilibrium denaturation and functional assays. Destabilizing mutations cause DBD to misfold when it is part of the p53 tetramer, but not when it is monomeric. This conformation is populated under moderately destabilizing conditions (10 °C in 2 M urea, and at physiological temperature in the absence of denaturant). Under those same conditions, it is not present in the isolated DBD fragment or in the presence of the TD mutation L344P, which abolishes tetramerization. Misfolding appears to involve intramolecular DBD-DBD association within a single tetrameric molecule. This association is promoted by destabilization of DBD (caused by mutation or elevated temperature) and by the high local DBD concentration enforced by tetramerization of TD. Disrupting the nonnative DBD-DBD interaction or transiently inhibiting tetramerization and allowing p53 to fold as a monomer may be potential strategies for pharmacological intervention in cancer.  相似文献   

4.
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of approximately 3 microM for its dimer-tetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations.  相似文献   

5.
The human p53 tetramerization domain (called p53tet; residues 325-355) spontaneously forms a dimer of dimers in solution. Hydrophobic interactions play a major role in stabilizing the p53 tetramer. However, the distinctive arrangement of charged residues at the dimer-dimer interface suggests that they also contribute to tetramer stability. Charge-reversal mutations at positions 343, 346, and 351 within the dimer-dimer interface were thus introduced into p53tet constructs and shown to result in the selective formation of a stable heterotetramer composed of homodimers. More precisely, mutants p53tet-E343K/E346K and p53tet-K351E preferentially associated with each other, but not with wild-type p53tet, to form a heterodimeric tetramer with enhanced thermal stability relative to either of the two components in isolation. The p53tet-E343K/E346K mutant alone assembled into a weakly stable tetramer in solution, whereas p53tet-K351E existed only as a dimer. Moreover, these mutants did not form heterocomplexes with wild-type p53tet, illustrating the specificity of the ionic interactions that form the novel heterotetramer. This study demonstrates the dramatic importance of ionic interactions in altering the stability of the p53 tetramer and in selectively creating heterotetramers of this protein scaffold.  相似文献   

6.
Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.  相似文献   

7.
8.
The p53 tumor suppressor protein is a critical checkpoint in prevention of tumor formation, and the function of p53 is dependent on proper formation of the active tetramer. In vitro studies have shown that p53 binds DNA most efficiently as a tetramer, though inactive p53 is predicted to be monomeric in vivo. We demonstrate that FlAsH binding can be used to distinguish between oligomeric states of p53, providing a potential tool to explore p53 oligomerization in vivo. The FlAsH tetra-cysteine binding motif has been incorporated along the dimer and tetramer interfaces in the p53 tetramerization domain to create reporters for the dimeric and tetrameric states of p53, though the geometry of the four cysteines is critical for efficient FlAsH binding. Furthermore, we demonstrate that FlAsH binding can be used to monitor tetramer formation in real-time. These results demonstrate the potential for using FlAsH fluorescence to monitor protein-protein interactions in vivo.  相似文献   

9.
The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.  相似文献   

10.
11.
12.
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.  相似文献   

13.
14.
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM.  相似文献   

15.
Ma B  Levine AJ 《Nucleic acids research》2007,35(22):7733-7747
Symmetries in the p53 response-element (p53RE) encode binding modes for p53 tetramer to recognize DNA. We investigated the molecular mechanisms and biological implications of the possible binding modes. The probabilities evaluated with molecular dynamics simulations and DNA sequence analyses were found to be correlated, indicating that p53 tetramer models studied here are able to read DNA sequence information. The traditionally believed mode with four p53 monomers binding at all four DNA quarter-sites does not cause linear DNA to bend. Alternatively, p53 tetramer can use only two monomers to recognize DNA sequence and induce DNA bending. With an arrangement of dimer of AB dimer observed in p53 trimer–DNA complex crystal, p53 can recognize supercoiled DNA sequence-specifically by binding to quarter-sites one and four (H14 mode) and recognize Holliday junction geometry-specifically. Examining R273H mutation and p53–DNA interactions, we found that at least three R273H monomers are needed to disable the p53 tetramer, consistent with experiments. But just one R273H monomer may greatly shift the binding mode probabilities. Our work suggests that p53 needs balanced binding modes to maintain genome stability. Inverse repeat p53REs favor the H14 mode and direct repeat p53REs may have high possibilities of other modes.  相似文献   

16.
p53 major tumour suppressor protein has presented a challenge for structural biology for two decades. The intact and complete p53 molecule has eluded previous attempts to obtain its structure, largely due to the intrinsic flexibility of the protein. Using ATP-stabilised p53, we have employed cryoelectron microscopy and single particle analysis to solve the first three-dimensional structure of the full-length p53 tetramer (resolution 13.7 A). The p53 molecule is a D2 tetramer, resembling a hollow skewed cube with node-like vertices of two sizes. Four larger nodes accommodate central core domains, as was demonstrated by fitting of its X-ray structure. The p53 monomers are connected via their juxtaposed N- and C-termini within smaller N/C nodes to form dimers. The dimers form tetramers through the contacts between core nodes and N/C nodes. This structure revolutionises existing concepts of p53's molecular organisation and resolves conflicting data relating to its biochemical properties. This architecture of p53 in toto suggests novel mechanisms for structural plasticity, which enables the protein to bind variably spaced DNA target sequences, essential for p53 transactivation and tumour suppressor functions.  相似文献   

17.
Tetramerization of the human p53 tumor suppressor protein is required for its biological functions. However, cellular levels of p53 indicate that it exists predominantly in a monomeric state. Since the oligomerization of p53 involves the rate-limiting formation of a primary dimer intermediate, we engineered a covalently linked pair of human p53 tetramerization (p53tet) domains to generate a tandem dimer (p53tetTD) that minimizes the energetic requirements for forming the primary dimer. We demonstrate that p53tetTD self-assembles into an oligomeric structure equivalent to the wild-type p53tet tetramer and exhibits dramatically enhanced oligomeric stability. Specifically, the p53tetTD dimer exhibits an unfolding/dissociation equilibrium constant of 26 fM at 37 degrees C, or a million-fold increase in stability relative to the wild-type p53tet tetramer, and resists subunit exchange with monomeric p53tet. In addition, whereas the wild-type p53tet tetramer undergoes coupled (i.e. two-state) dissociation/unfolding to unfolded monomers, the p53tetTD dimer denatures via an intermediate that is detectable by differential scanning calorimetry but not CD spectroscopy, consistent with a folded p53tetTD monomer that is equivalent to the p53tet primary dimer. Given its oligomeric stability and resistance against hetero-oligomerization, dimerization of p53 constructs incorporating the tetramerization domain may yield functional constructs that may resist exchange with wild-type or mutant forms of p53.  相似文献   

18.
The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.  相似文献   

19.
p53 domains: structure, oligomerization, and transformation.   总被引:15,自引:3,他引:12       下载免费PDF全文
Wild-type p53 forms tetramers and multiples of tetramers. Friedman et al. (P. N. Friedman, X. B. Chen, J. Bargonetti, and C. Prives, Proc. Natl. Acad. Sci. USA 90:3319-3323, 1993) have reported that human p53 behaves as a larger molecule during gel filtration than it does during sucrose gradient sedimentation. These differences argue that wild-type p53 has a nonglobular shape. To identify structural and oligomerization domains in p53, we have investigated the physical properties of purified segments of p53. The central, specific DNA-binding domain within murine amino acids 80 to 320 and human amino acids 83 to 323 behaves predominantly as monomers during analysis by sedimentation, gel filtration, and gel electrophoresis. This consistent behavior argues that the central region of p53 is globular in shape. Under appropriate conditions, however, this segment can form transient oligomers without apparent preference for a single oligomeric structure. This region does not enhance transformation by other oncogenes. The biological implications of transient oligomerization by this central segment, therefore, remain to be demonstrated. Like wild-type p53, the C terminus, consisting of murine amino acids 280 to 390 and human amino acids 283 to 393, behaves anomalously during gel filtration and apparently has a nonglobular shape. Within this region, murine amino acids 315 to 350 and human amino acids 323 to 355 are sufficient for assembly of stable tetramers. The finding that murine amino acids 315 to 360 enhance transformation by other oncogenes strongly supports the role of p53 tetramerization in oncogenesis. Amino acids 330 to 390 of murine p53 and amino acids 340 to 393 of human p53, which have been implicated by Sturzbecher et al. in tetramerization (H.-W. Sturzbecher, R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins, Oncogene 7:1513-1523, 1992), do not form stable tetramers under our conditions. Our findings indicate that p53 has at least two autonomous oligomerization domains: a strong tetramerization domain in its C-terminal region and a weaker oligomerization domain in the central DNA binding region of p53. Together, these domains account for the formation of tetramers and multiples of tetramers by wild-type p53. The tetramerization domain is the major determinant of the dominant negative phenotype leading to transformation by mutant p53s.  相似文献   

20.
Discrimination of DNA binding sites by mutant p53 proteins.   总被引:3,自引:1,他引:2       下载免费PDF全文
Critical determinants of DNA recognition by p53 have been identified by a molecular genetic approach. The wild-type human p53 fragment containing amino acids 71 to 330 (p53(71-330)) was used for in vitro DNA binding assays, and full-length human p53 was used for transactivation assays with Saccharomyces cerevisiae. First, we defined the DNA binding specificity of the wild-type p53 fragment by using systematically altered forms of a known consensus DNA site. This refinement indicates that p53 binds with high affinity to two repeats of PuGPuCA.TGPyCPy, a further refinement of an earlier defined consensus half site PuPuPuC(A/T).(T/A) GPyPyPy. These results were further confirmed by transactivation assays of yeast by using full-length human p53 and systematically altered DNA sites. Dimers of the pentamer AGGCA oriented either head-to-head or tail-to-tail bound efficiently, but transactivation was facilitated only through head-to-head dimers. To determine the origins of specificity in DNA binding by p53, we identified mutations that lead to altered specificities of DNA binding. Single-amino-acid substitutions were made at several positions within the DNA binding domain of p53, and this set of p53 point mutants were tested with DNA site variants for DNA binding. DNA binding analyses showed that the mutants Lys-120 to Asn, Cys-277 to Gln or Arg, and Arg-283 to Gln bind to sites with noncanonical base pair changes at positions 2, 3, and 1 in the pentamer (PuGPuCA), respectively. Thus, we implicate these residues in amino acid-base pair contacts. Interestingly, mutant Cys-277 to Gln bound a consensus site as two and four monomers, as opposed to the wild-type p53 fragment, which invariably binds this site as four monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号