首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike most eukaryotic mRNAs studied to date, Xenopus serum albumin mRNA has a short (17-residue), discrete poly(A) tail. We recently reported that this short poly(A) tail results from regulation of the length of poly(A) on albumin pre-mRNA. The purpose of the present study was to locate the cis-acting element responsible for this, the poly(A)-limiting element or PLE. An albumin minigene consisting of albumin cDNA joined in exon 13 to the 3' end of the albumin gene produced mRNA with <20 nt poly(A) when transfected into mouse fibroblasts. This result indicates both that cis-acting sequences that regulate poly(A) length are within this construct, and that nuclear regulation of poly(A) length is conserved between vertebrates. Poly(A) length regulation was retained after replacing the terminal 53 bp and 3' flanking region of the albumin gene with a synthetic polyadenylation element (SPA). Conversely, fusing albumin gene sequence spanning the terminal 53 bp of the albumin gene and 3' flanking sequence onto the human beta-globin gene yielded globin mRNA with a 200-residue poly(A)tail. These data indicate that the PLE resides upstream of the sequence elements involved in albumin pre-mRNA 3' processing. Poly(A) length regulation was restored upon fusing a segment bearing albumin intron 14, exon 15, and 3' flanking sequence onto the beta-globin gene. We demonstrate that exon 15 contains two PLEs that can act independently to regulate the length of poly(A).  相似文献   

2.
The poly(A)-limiting element (PLE) restricts the length of the poly(A) tail to <20 nt when present in the terminal exon of a pre-mRNA. We previously identified a 65 kDa protein that could be cross-linked to a functional PLE, but not to an inactive mutant element. This binding was competed by poly(U) and poly(C), but not poly(A) or poly(G). Selectivity for the pyrimidine-rich portion of the PLE was demonstrated by RNase footprinting of the binding activity in total nuclear extract. A 65 kDa protein that selectively cross-linked to the functional PLE was purified by conventional chromatography and identified as the large subunit of U2 snRNP auxiliary factor (U2AF). Overexpression of U2AF65 in cells transfected with a PLE-containing reporter construct resulted in the appearance of a population of mRNAs with heterogeneous poly(A) tails. However, this effect was lost following deletion of the C-terminal RNA recognition motifs (RRMs). A C-->G mutation following the AG dinucleotide in the PLE resulted in mRNA with poly(A) ranging from 25-50 nt. This reverted to a discrete, <20 nt poly(A) tail in cells expressing U2AF65. Our results suggest that U2AF modulates the function of the PLE, perhaps by facilitating the binding of another protein to the element.  相似文献   

3.
4.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

5.
6.
Autoregulation of poly(A)-binding protein synthesis in vitro.   总被引:2,自引:0,他引:2       下载免费PDF全文
The poly(A)-binding protein (PABP), in a complex with the 3'poly(A) tail of eukaryotic mRNAs, plays important roles in the control of translation and message stability. All known examples of PABP mRNAs contain an extensive A-rich sequence in their 5' untranslated regions. Studies in mammalian cells undergoing growth stimulation or terminal differentiation indicate that PABP expression is regulated at the translational level. Here we examine the hypothesis that synthesis of the PABP is autogenously controlled. We show that the endogenous inactive PABP mRNA in rabbit reticulocytes can be specifically stimulated by addition of low concentrations of poly(A) and that this stimulation is also observed with in vitro transcribed human PABP mRNA. By deleting the A-rich region from the leader of human PABP mRNA and adding it upstream of the initiator AUG in a reporter mRNA we show that the adenylate tract is sufficient and necessary for mRNA repression and poly(A)-mediated activation in the reticulocyte cell-free system. UV cross-linking experiments demonstrate that the leader adenylate tract binds PABP. Furthermore, addition of recombinant GST-PABP to the cell-free system represses translation of mRNAs containing the A-rich sequence in their 5'UTR, but has no effect on control mRNA. We thus conclude that in vitro PABP binding to the A-rich sequence in the 5' UTR of PABP mRNA represses its own synthesis.  相似文献   

7.
cDNA clones for bovine poly(A) binding protein II (PAB II) were isolated. Their sequence predicts a protein of 32.8 kDa, revising earlier estimates of molecular mass. The protein contains one putative RNA-binding domain of the RNP type, an acidic N-terminal and a basic C-terminal domain. Analyses of authentic PAB II were in good agreement with all predictions from the cDNA sequence except that a number of arginine residues appeared to be post-translationally modified. Poly(A) binding protein II expressed in Escherichia coli was active in poly(A) binding and reconstitution of processive polyadenylation, including poly(A) tail length control. The cDNA clones showed a number of potential PAB II binding sites in the 3' untranslated sequence. Bovine poly(A)+RNA contained two mRNAs hybridizing to a PAB II-specific probe. Analysis of a genomic clone revealed six introns in the coding sequence. The revised molecular mass led to a demonstration of PAB II oligomer formation and a reinterpretation of earlier data concerning the protein's binding to poly(A).  相似文献   

8.
9.
The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).  相似文献   

10.
The addition of a poly(A)-tail to the 3' termini of RNA molecules influences stability, nuclear export, and efficiency of translation. In the cytoplasm, dynamic changes in the length of the poly(A)-tail have long been recognized as reflective of the switch between translational silence and activation. Thus, measurement of the poly(A)-tail associated with any given mRNA at steady-state can serve as a surrogate readout of its translation-state. Here, we describe a simple new method to 3'-tag adenylated RNA in total RNA samples using the intrinsic property of Escherichia coli DNA polymerase I to extend an RNA primer using a DNA template. This tag can serve as an anchor for cDNA synthesis and subsequent gene-specific PCR to assess poly(A)-tail length. We call this method extension Poly(A) Test (ePAT). The ePAT approach is as efficient as traditional Ligation-Mediated Poly(A) Test (LM-PAT) assays, avoids problems of internal priming associated with oligo-dT-based methods, and allows for the accurate analysis of both the poly(A)-tail length and alternate 3' UTR usage in 3' RACE applications.  相似文献   

11.
12.
The yeast TRP4 mRNA 3' end formation element is a bidirectional element which functions in both orien-tations in an artificial in vivo test system. In this study, the role of 3' end formation was analysed in the context of the entire TRP4 gene. The 3' untranslated region (3'UTR) of TRP4 was altered and changes were analysed for their influence on TRP4 gene expression. The 3'UTR in reverse orientation was fully functional and did not affect TRP4 gene expression. Exchanging the TRP4 3'UTR by the bidirectional ARO4 or the unidirectional GCN4 3' end formation element allowed efficient gene expression. Deletion of the entire TRP4 3'UTR resulted in 70% reduction of TRP4 mRNA and 50% reduced specific Trp4 enzyme activity in comparison to wild-type. A single point mutation within the TRP4 3'UTR caused the same effect on gene expression. This point mutation did not only affect the efficiency of 3' end formation, but also produced new poly(A) sites which were situated upstream of the wild-type poly(A) sites. Therefore this sequence motif in the TRP4 3'UTR acts simultaneously as both an efficiency and positioning element.  相似文献   

13.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

14.
15.
16.
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.  相似文献   

17.
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.  相似文献   

18.
19.
The downstream region of the mouse beta (major) globin poly(A) signal was mutated and analyzed for function in transfected COS cells. From analysis of unidirectional Bal31 deletions, the 3' boundary of the downstream element was defined as +22 (22 nucleotides downstream from the cleavage site). Analysis of cluster mutations, in which 5 or 6 adjacent bases were replaced with a random CA-containing sequence in a manner that did not alter spacing, confirmed +22 as the 3' boundary of the downstream element. The analysis also revealed two short UG-rich sequences, located from +5 to +10 and from +17 to +22, as major functional components. In contrast, a more refined series of mutations, in which clusters of 3 bases were replaced, failed to cause loss of function. We conclude that the downstream element of the mouse beta globin poly(A) signal is bipartite in structure, and that portions of its sequence are functionally redundant.  相似文献   

20.
The steady state changes in total rat hepatic cytoplasmic RNA, poly(A)+ RNA and poly(A)-RNA were assessed in response to turpentine induced inflammation. From 18 to 24 h after injury, cytoplasmic RNA doubled, while poly(A)+ RNA peaked at 24 h, 3.5 times over control animals. Cell-free translation showed significant increases in messenger RNA levels beginning at 18 h. Gel electrophoresis of translation products revealed significant increases in several polypeptides and a decrease in others. Poly(A)-RNA from control and injured rats translated to an insignificant level and the electrophoretic gel patterns of their proteins were similar. Furthermore, no change had occurred in the 3' poly(A)-sequences during the course of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号