首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

2.
This work demonstrated the constitutive expressionof peroxisome proliferator-activated receptor (PPAR)- and PPAR-in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR- expression induced by 10 µg/ml lipopolysaccharide (LPS) was observed, whereas PPAR- mRNA expression was not modified. 15-Deoxy-12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (80%) and inducible nitric oxide synthase (iNOS) mRNA expression (80%), whereas troglitazone (10 µM) only inhibited iNOS mRNA expression (50%). 15d-PGJ2 decreasedLPS-induced interleukin (IL)-1 (25%) and tumor necrosis factor(TNF)- (40%) expression. Interestingly, troglitazone stronglydecreased TNF- expression (50%) but had no significant effect onIL-1 expression. 15d-PGJ2 was able to inhibitDNA-binding activity of both nuclear factor (NF)-B and AP-1.Troglitazone had no effect on NF-B activation and was shown toincrease LPS-induced AP-1 activation. 15d-PGJ2 andtroglitazone modulated the expression of LPS-induced iNOS, COX-2, andproinflammatory cytokines differently. Indeed, troglitazone seems tospecifically target TNF- and iNOS pathways. These results offer newinsights in regard to the anti-inflammatory potential of the PPAR-ligands and underline different mechanisms of action of15d-PGJ2 and troglitazone in synovial fibroblasts.

  相似文献   

3.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

4.
Alterations in airway ion transport in NKCC1-deficient mice   总被引:2,自引:0,他引:2  
Airways of Na+-K+-2Cl(NKCC1)-deficient mice (/) were studied in Ussing chambers todetermine the role of the basolateral NKCC1 in transepithelial anionsecretion. The basal short-circuit current (Isc)of tracheae and bronchi from adult mice did not differ betweenNKCC1/ and normal mice, whereas NKCC1/ tracheae from neonatalmice exhibited a significantly reduced basalIsc. In normal mouse tracheae, sensitivity tothe NKCC1 inhibitor bumetanide correlated inversely with the age of themouse. In contrast, tracheae from NKCC1/ mice at all ages wereinsensitive to bumetanide. The anion secretory response to forskolindid not differ between normal and NKCC1/ tissues. However, whenlarger anion secretory responses were induced with UTP, airways fromthe NKCC1/ mice exhibited an attenuated response. Ion substitutionand drug treatment protocols suggested that HCOsecretion compensated for reduced Cl secretion inNKCC1/ airway epithelia. The absence of spontaneous airway diseaseor pathology in airways from the NKCC1/ mice suggests that theNKCC1 mutant mice are able to compensate adequately for absence of theNKCC1 protein.

  相似文献   

5.
We have investigated the role ofinhibitor B (IB) in the activation of nuclear factor B(NF-B) observed in human aortic endothelial cells (HAEC) undergoinga low shear stress of 2 dynes/cm2. Low shear for 6 hresulted in a reduction of IB levels, an activation of NF-B,and an increase in B-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion.Overexpression of IB in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation ofIB is the major factor in the low shear-induced activation ofNF-B in HAEC. We then investigated the role of nitric oxide (NO) inthe regulation of IB/NF-B. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-B activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 µM) orsodium nitroprusside (1 mM) before low shear stress significantlyincreased cytoplasmic IB and concomitantly reduced NF-Bbinding activity and B-dependent VCAM-1 promoter activity. Together,these data suggest that NO may play a major role in the regulation ofIB levels in HAEC and that the application of low shear flowincreases NF-B activity by attenuating NO generation and thusIB levels.

  相似文献   

6.
Protein kinase C (PKC) plays animportant role in activating store-operated Ca2+ channels(SOC) in human mesangial cells (MC). The present study was performed todetermine the specific isoform(s) of conventional PKC involved inactivating SOC in MC. Fura 2 fluorescence ratiometry showed that thethapsigargin-induced Ca2+ entry (equivalent to SOC) wassignificantly inhibited by 1 µM Gö-6976 (a specific PKC andI inhibitor) and PKC antisense treatment (2.5 nM for 24-48h). However, LY-379196 (PKC inhibitor) and2,2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanoldimethyl ether(HBDDE; PKC and  inhibitor) failed to affect thapsigargin-evoked activation of SOC. Single-channel analysis in the cell-attached configuration revealed that Gö-6976 and PKC antisensesignificantly depressed thapsigargin-induced activation of SOC.However, LY-379196 and HBDDE did not affect the SOC responses. Ininside-out patches, application of purified PKC or I, but notII or , significantly rescued SOC from postexcision rundown.Western blot analysis revealed that thapsigargin evoked a decrease incytosolic expression with a corresponding increase in membraneexpression of PKC and . However, the translocation from cytosolto membranes was not detected for PKCI or II. These resultssuggest that PKC participates in the intracellular signaling pathwayfor activating SOC upon release of intracellular stores ofCa2+.

  相似文献   

7.
Westudied the interplay between matrix Ca2+ concentration([Ca2+]) and mitochondrial membrane potential() in regulation of the mitochondrial permeability transition(MPT) during anoxia and reoxygenation. Without Ca2+loading, anoxia caused near-synchronous dissipation,mitochondrial Ca2+ efflux, and matrix volume shrinkage whena critically low PO2 was reached, which wasrapidly reversible upon reoxygenation. These changes were related toelectron transport inhibition, not MPT. Cyclosporin A-sensitive MPT didoccur when extramitochondrial [Ca2+] was increased topromote significant Ca2+ uptake during anoxia, depending onthe Ca2+ load size and ability to maintain . However,when [Ca2+] was increased after complete dissipation, MPT did not occur until reoxygenation, at which timereactivation of electron transport led to partial regeneration.In the setting of elevated extramitochondrial Ca2+, thisenhanced matrix Ca2+ uptake while promoting MPT because ofless than full recovery of . The interplay between andmatrix [Ca2+] in accelerating or inhibiting MPT duringanoxia/reoxygenation has implications for preventing reoxygenationinjury associated with MPT.

  相似文献   

8.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

9.
Polyaminesare essential for early mucosal restitution that occurs by epithelialcell migration to reseal superficial wounds after injury. Normalintestinal epithelial cells are tightly bound in sheets, but they needto be rapidly disassembled during restitution. -Catenin is involvedin cell-cell adhesion, and its tyrosine phosphorylation causesdisassembly of adhesion junctions, enhancing the spreading of cells.The current study determined whether polyamines are required for thestimulation of epithelial cell migration by altering -catenintyrosine phosphorylation. Migration of intestinal epithelial cells(IEC-6 line) after wounding was associated with an increase in-catenin tyrosine phosphorylation, which decreased the bindingactivity of -catenin to -catenin. Polyamine depletion by-difluoromethylornithine reduced cytoplasmic free Ca2+concentration ([Ca2+]cyt), preventedinduction of -catenin phosphorylation, and decreased cell migration.Elevation of [Ca2+]cyt induced by theCa2+ ionophore ionomycin restored -cateninphosphorylation and promoted migration in polyamine-deficient cells.Decreased -catenin phosphorylation through the tyrosine kinaseinhibitor herbimycin-A or genistein blocked cell migration, which wasaccompanied by reorganization of cytoskeletal proteins. These resultsindicate that -catenin tyrosine phosphorylation plays a criticalrole in polyamine-dependent cell migration and that polyamines induce-catenin tyrosine phosphorylation at least partially through[Ca2+]cyt.

  相似文献   

10.
We have examined the mechanisms regulatingprostacyclin (PGI2) synthesis after acute exposure of humanumbilical vein endothelial cells (HUVEC) to interleukin-1 (IL-1).IL-1 evoked an early (30 min) release of PGI2 and[3H]arachidonate that was blocked by the cytosolicphospholipase A2 (cPLA2) inhibitorarachidonyl trifluoromethyl ketone. IL-1-mediated activationof extracellular signal-regulated kinase 1/2 (ERK1/2; p42/p44mapk) coincided temporally with phosphorylation ofcPLA2 and with the onset of PGI2synthesis. The mitogen-activated protein kinase (MAPK) kinase (MEK)inhibitors, PD-98059 and U-0126, blocked IL-1-induced ERKactivation and partially attenuated cPLA2phosphorylation and PGI2 release, suggesting thatERK-dependent and -independent pathways regulate cPLA2phosphorylation. SB-203580 treatment enhanced IL-1-induced MEK,p42/44mapk, and cPLA2 phosphorylation butreduced thrombin-stimulated MEK and p42/44mapk activation.IL-1, but not thrombin, activated Raf-1 as assessed byimmune-complex kinase assay, as did SB-203580 alone. These results showthat IL-1 causes an acute upregulation of PGI2generation in HUVEC, establish a role for theMEK/ERK/cPLA2 pathway in this early release, and provideevidence for an agonist-specific cross talk between p38mapkand p42/44mapk that may reflect receptor-specificdifferences in the signaling elements proximal to MAPK activation.

  相似文献   

11.
It has long been known thatNa+ channels in electrically tight epithelia are regulatedby homeostatic mechanisms that maintain a steady state and allow newlevels of transport to be sustained in hormonally challenged cells.Little is known about the potential pathways involved in theseprocesses. In addition to short-term effect, recent evidence alsoindicates the involvement of PKC in the long-term regulation of theepithelial Na+ channel (ENaC) at the protein level(40). To determine whether stimulation of ENaC involvesfeedback regulation of PKC levels, we utilized Western blot analysis todetermine the distribution of PKC isoforms in polarized A6 epithelia.We found the presence of PKC isoforms in the conventional ( and), novel (, , and ), and atypical (, , and) groups. Steady-state stimulation of Na+ transport withaldosterone was accompanied by a specific decrease of PKC proteinlevels in both the cytoplasmic and membrane fractions. Similarly,overnight treatment with an uncharged amiloride analog (CDPC), aprocedure that through feedback regulation causes a stimulation ofNa+ transport, also decreased PKC levels. These effectswere additive, indicating separate mechanisms that converge at thelevel of PKC. These effects were not accompanied by changes ofPKC mRNA levels as determined by Northern blot analysis. We proposethat this may represent a novel regulatory feedback mechanism necessary for sustaining an increase of Na+ transport.

  相似文献   

12.
Whole cell perforated patch-clampexperiments were performed with adult rat alveolar epithelial cells.The holding potential was 60 mV, and depolarizing voltage stepsactivated voltage-gated K+ (Kv) channels. Thevoltage-activated currents exhibited a mean reversal potential of 32mV. Complete activation was achieved at 10 mV. The currents exhibitedslow inactivation, with significant variability in the time coursebetween cells. Tail current analysis revealed cell-to-cell variabilityin K+ selectivity, suggesting contributions of multiple Kv-subunits to the whole cell current. The Kv channels also displayedsteady-state inactivation when the membrane potential was held atdepolarized voltages with a window current between 30 and 5 mV.Analysis of RNA isolated from these cells by RT-PCR revealed thepresence of eight Kv -subunits (Kv1.1, Kv1.3, Kv1.4, Kv2.2, Kv4.1,Kv4.2, Kv4.3, and Kv9.3), three -subunits (Kv1.1, Kv2.1, andKv3.1), and two K+ channel interacting protein (KChIP)isoforms (KChIP2 and KChIP3). Western blot analysis with available Kv-subunit antibodies (Kv1.1, Kv1.3, Kv1.4, Kv4.2, and Kv4.3) showedlabeling of 50-kDa proteins from alveolar epithelial cells grown inmonolayer culture. Immunocytochemical analysis of cells from monolayersshowed that Kv1.1, Kv1.3, Kv1.4, Kv4.2, and Kv4.3 were localized to theapical membrane. We conclude that expression of multiple Kv -, -,and KChIP subunits explains the variability in inactivation gating andK+ selectivity observed between cells and that Kv channelsin the apical membrane may contribute to basal K+ secretionacross the alveolar epithelium.

  相似文献   

13.
First published September 5, 2001;10.1152/ ajpcell.00256.2001.The expression and function of theendogenous inhibitor of cAMP-dependent protein kinase (PKI) inendothelial cells are unknown. In this study, overexpression of rabbitmuscle PKI gene into endothelial cells inhibited the cAMP-mediatedincrease and exacerbated thrombin-induced decrease in endothelialbarrier function. We investigated PKI expression in human pulmonaryartery (HPAECs), foreskin microvessel (HMECs), and brain microvesselendothelial cells (HBMECs). RT-PCR using specific primers for humanPKI, human PKI, and mouse PKI sequences detectedPKI and PKI mRNA in all three cell types. Sequencing and BLASTanalysis indicated that forward and reverse DNA strands for PKI andPKI were of >96% identity with database sequences. RNaseprotection assays showed protection of the 542 nucleotides in HBMEC andHPAEC PKI mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKImRNA. Western blot analysis indicated that PKI protein was detectedin all three cell types, whereas PKI was found in HBMECs. Insummary, endothelial cells from three different vascular beds expressPKI and PKI, which may be physiologically important inendothelial barrier function.

  相似文献   

14.
The F508 mutation leads to retention of cystic fibrosistransmembrane conductance regulator (CFTR) in the endoplasmic reticulum and rapid degradation by the proteasome and other proteolytic systems.In stably transfected LLC-PK1(porcine kidney) epithelial cells, F508 CFTR conforms to thisparadigm and is not present at the plasma membrane. WhenLLC-PK1 cells or human nasal polyp cells derived from a F508 homozygous patient are grown on plastic dishes and treated with an epithelial differentiating agent (DMSO, 2%for 4 days) or when LLC-PK1 cellsare grown as polarized monolayers on permeable supports, plasmamembrane F508 CFTR is significantly increased. Moreover, whenconfluent LLC-PK1 cells expressingF508 CFTR were treated with DMSO and mounted in an Ussing chamber, afurther increase in cAMP-activated short-circuit current (i.e., ~7µA/cm2;P < 0.00025 compared with untreatedcontrols) was observed. No plasma membrane CFTR was detected after DMSOtreatment in nonepithelial cells (mouse L cells) expressing F508CFTR. The experiments describe a way to augment F508 CFTR maturationin epithelial cells that appears to act through a novel mechanism andallows insertion of functional F508 CFTR in the plasma membranes oftransporting cell monolayers. The results raise the possibility thatincreased epithelial differentiation might increase the delivery ofF508 CFTR from the endoplasmic reticulum to the Golgi, where theF508 protein is shielded from degradative pathways such as theproteasome and allowed to mature.

  相似文献   

15.
Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we haveobserved that cardiac fibroblasts harbor five different RGD-bindingintegrins: 81,31, 51, v1, and v3.Stimulation of cardiac fibroblasts by angiotensin II (ANG II) ortransforming growth factor-1 (TGF-1) resulted in an increase ofprotein and heightening by 50% of the receptor density of81-integrin. The effect of ANG II wasblocked by an AT1, but not an AT2, receptorantagonist, or by an anti-TGF-1 antibody. ANG II and TGF-1increased fibronectin secretion, smooth muscle -actin synthesis, andformation of actin stress fibers and enhanced attachment of fibroblaststo a fibronectin matrix. The 8- and1-subunits were colocalized by immunocytochemistry with vinculin or 3-integrin at focal adhesion sites.These results indicate that 81-integrinis an abundant integrin on rat cardiac fibroblasts. Its positivemodulation by ANG II and TGF-1 in a myofibroblast-likephenotype suggests the involvement of81-integrin in extracellularmatrix protein deposition and cardiac fibroblast adhesion.

  相似文献   

16.
We investigated the regulation ofATP-sensitive K+ (KATP) currents in murinecolonic myocytes with patch-clamp techniques. Pinacidil(105 M) activated inward currents in the presence of highexternal K+ (90 mM) at a holding potential of 80 mV indialyzed cells. Glibenclamide (105 M) suppressedpinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 × 107 M) inhibited pinacidil-activated current.4--Phorbol ester (5 × 107 M), an inactive formof PDBu, had no effect on pinacidil-activated current. In cell-attachedpatches, the open probability of KATP channels wasincreased by pinacidil, and PDBu suppressed openings ofKATP channels. When cells were pretreated withchelerythrine (106 M) or calphostin C (107M), inhibition of the pinacidil-activated whole cell currents by PDBuwas significantly reduced. In cells studied with the perforated patchtechnique, PDBu also inhibited pinacidil-activated current, and thisinhibition was reduced by chelerythrine (106 M).Acetylcholine (ACh; 105 M) inhibited pinacidil-activatedcurrents, and preincubation of cells with calphostin C(107 M) decreased the effect of ACh. Cells dialyzed withprotein kinase C -isoform (PKC) antibody had normal responses topinacidil, but the effects of PDBu and ACh on KATP wereblocked in these cells. Immunofluorescence and Western blots showedexpression of PKC in intact muscles and isolated smooth muscle cellsof the murine proximal colon. These data suggest that PKC regulates KATP in colonic muscle cells and that the effects of ACh onKATP are largely mediated by PKC. PKC appears to be themajor isozyme that regulates KATP in murine colonic myocytes.

  相似文献   

17.
Transforming growth factor-(TGF-) is known to induce -smooth muscle actin (-SMA) infibroblasts and is supposed to play a role in myofibroblastdifferentiation and tumor desmoplasia. Our objective was to elucidatethe impact of TGF-1 on -SMA expression in fibroblasts in athree-dimensional (3-D) vs. two-dimensional (2-D) environment. Inmonolayer culture, all fibroblast cultures responded in a similarfashion to TGF-1 with regard to -SMA expression. In fibroblastspheroids, -SMA expression was reduced and induction by TGF-1 washighly variable. This difference correlated with a differentialregulation in the TGF- receptor (TGFR) expression, in particularwith a reduction in TGF-RII in part of the fibroblast types. Ourdata indicate that 1) sensitivity to TGF-1-induced -SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, suchas a general reduction/loss in TGF-RIII, contribute to an altered TGFR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFR typesI and II determine the sensitivity to TGF-1-induced -SMAexpression in the 3-D setting. We suggest that fibroblasts that can beinduced by TGF-1 to produce -SMA in spheroid culture reflect a"premyofibroblastic" phenotype.

  相似文献   

18.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

19.
The most common mutation ofthe cystic fibrosis transmembrane conductance regulator(CFTR), F508, is a trafficking mutant that has prolongedassociations with molecular chaperones and is rapidly degraded, atleast in part by the ubiquitin-proteasome system. Sodium4-phenylbutyrate (4PBA) improves F508-CFTR trafficking and functionin vitro in cystic fibrosis epithelial cells and in vivo. To furtherunderstand the mechanism of action of 4PBA, we tested the hypothesisthat 4PBA modulates the targeting of F508-CFTR for ubiquitinationand degradation by reducing the expression of Hsc70 in cystic fibrosisepithelial cells. IB3-1 cells (genotype F508/W1282X) that weretreated with 0.05-5 mM 4PBA for 2 days in culture demonstrated adose-dependent reduction in Hsc70 protein immunoreactivity and mRNAlevels. Immunoprecipitation with Hsc70-specific antiserum demonstratedthat Hsc70 and CFTR associated under control conditions and thattreatment with 4PBA reduced these complexes. Levels of immunoreactiveHsp40, Hdj2, Hsp70, Hsp90, and calnexin were unaffected by 4PBAtreatment. These data suggest that 4PBA may improve F508-CFTRtrafficking by allowing a greater proportion of mutant CFTR to escapeassociation with Hsc70.

  相似文献   

20.
Tumor necrosis factor- (TNF-), oneof the major inflammatory cytokines, is known to influence endothelialcell migration. In this study, we demonstrate that exposure of calfpulmonary artery endothelial cells to TNF- caused an increase in theformation of membrane protrusions and cell migration. Fluorescencemicroscopy revealed an increase in v3focal contacts but a decrease in 51 focalcontacts in TNF--treated cells. In addition, both cell-surface andtotal cellular expression of v3-integrinsincreased significantly, whereas the expression of51-integrins was unaltered. Only focalcontacts containing v3- but not51-integrins were present in membraneprotrusions of cells at the migration front. In contrast, robust focalcontacts containing 51-integrins were present in cells behind the migration front. A blocking antibody tov3, but not a blocking antibody to5-integrins, significantly inhibited TNF--inducedcell migration. These results indicate that in response to TNF-,endothelial cells may increase the activation and ligation ofv3 while decreasing the activation andligation of 51-integrins to facilitatecell migration, a process essential for vascular wound healing and angiogenesis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号