首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In conditions with the poor availability of inorganic carbon(CO2 and HCO3 : Ci) for photosynthesis, aquatic photosyntheticorganisms induce active Ci uptake systems that allow accumulationof Ci within the cell, the so-called carbon-concentrating mechanism(CCM). In a unicellular green alga, Chlamydomonas reinhardtii,a regulatory factor CCM1 is indispensable for the regulationof the CCM by sensing CO2 availability. CCM1 has two putativezinc-binding domains with several conserved cysteine and histidineresidues in its N-terminal region. To determine whether thedomains actually bind zinc atoms, the N-terminal parts of CCM1were expressed as glutathione S-transferase fusion proteinsand subjected to atomic absorption spectrometry. It was foundthat 1 mol of zinc is bound to 1 mol of amino acid regions 1–71and 72–101 of CCM1, respectively. In the case of the site-directedmutant proteins, H54Y, C77V and C80V, the zinc-binding abilitywas lost. Physiological analyses of the transgenic Chlamydomonascells harboring a mutated Ccm1 gene revealed that amino acidresidues such as C36, C41, H54, C77, C80, H90 and C93 were indispensablefor induction of the CCM in response to Ci-limiting stress conditions.Size exclusion chromatography followed by immunoblot analysesindicated that CCM1 is present as a protein complex of approximately290–580 kDa independent of Ci availability.  相似文献   

2.
Chromosome terminal, complex repeats in the dipteran Chironomus pallidivittatus show rapid concerted evolution during which there is remarkably efficient homogenization of the repeat units within and between chromosome ends. It has been shown previously that gene conversion is likely to be an important component during these changes. The sequence evolution could be a result of different processes—exchanges between repeats in the tandem array as well as information transfer between units in different chromosomes—and is therefore difficult to analyze in detail. In this study the concerted evolution of a region present only once per chromosome, at the junction between the telomeric complex repeats and the subtelomeric DNA was therefore investigated in the two sibling species C. pallidivittatus and C. tentans. Material from individual microdissected chromosome ends was used, as well as clones from bulk genomic DNA. On the telomeric side of the border pronounced species-specific sequence differences were observed, the patterns being similar for clones of different origin within each species. Mutations had been transmitted efficiently between chromosomes also when adjoining, more distally localized DNA showed great differences in sequence, suggesting that gene conversion had taken place. The evolving telomeric region bordered proximally to subtelomeric DNA with high evolutionary constancy. More proximally localized, subtelomeric DNA evolved more rapidly and showed heterogeneity between species and chromosomes. Received: 24 September 1997 / Accepted: 24 November 1997  相似文献   

3.
Mechanically Activated Currents in Chick Heart Cells   总被引:7,自引:0,他引:7  
As predicted from stretch-induced changes of rate and rhythm in the heart, acutely isolated embryonic chick heart cells exhibit whole-cell mechanosensitive currents. These currents were evoked by pressing on cells with a fire polished micropipette and measured through a perforated patch using a second pipette. The currents were carried by Na+ and K+ but not Cl, and were independent of external Ca2+. The currents had linear I/V curves reversing at −16 mV and were completely blocked by Gd3+≥ 30 μm and Grammostola spatulata venom at a dilution of 1:1000. Approximately 20% of cells showed time dependent inactivation. In contrast to direct mechanical stimulation, hypotonic volume stress produced an increase in conductance for anions rather than cations—the two stimuli are not equivalent. The cells had two types of stretch-activated ion channels (SACs): a 21 pS nonspecific cation-selective reversing at −2 mV and a 90 pS K+ selective reversing at −70 mV in normal saline. The activity of SACs was strongly correlated with the presence of whole-cell currents. Both the whole-cell currents and SACs were blocked by Gd3+ and by Grammostola spatulata spider venom. Mechanical stimulation of spontaneously active cells increased the beating rate and this effect was blocked by Gd3+. We conclude that physiologically active mechanosensitive currents arise from stretch activated ion channels. Received: 8 April 1996/Revised: 8 August 1996  相似文献   

4.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

5.
6.
Receptor tyrosine kinases with five, seven, and three Ig-like domains in their extracellular region are grouped in subclasses IIIa, IIIb, and IIIc, respectively. Here, we describe the genomic organization of the extracellular coding region of the human FGFR4 (IIIc) and FLT4 (IIIb) genes and compare it to that of the human FGFR1(IIIc), KIT, and FMS (IIIa). The results show that while genes belonging to the same subclass have an identical exon/intron structure in their extracellular coding region—as they do in their intracellular coding region—genes of related subclasses only have a similar exon/intron structure. These results strongly support the hypothesis that the genes of the three subclasses evolved from a common ancestor by duplications involving entire genes, already in pieces. Hypotheses on the origin of introns and on the difference in the number of extracellular Ig-like domains in the three gene subclasses are discussed. Received: 19 August 1996 / Accepted: 2 January 1997  相似文献   

7.
The pollen grains of most angiosperms contain stores of RNAsand their translation products required for pollen germinationand subsequent early elongation of pollen tubes. Polypyrimidinetract-binding protein (PTB), which is involved in the regulationof pre-mRNA alternative splicing, internal ribosomal entry site(IRES)-mediated translation and mRNA localization/sorting, isknown to act as a bridging molecule between RNAs and a varietyof cellular factors to fulfill cellular functions in both thenucleus and cytoplasm. Moreover, it has been reported that PTBplays roles in the differentiation and development of animalcells and tissues. In the Arabidopsis genome, there are twoPTB-related genes, tentatively termed AtPTB1 and AtPTB2. Inthe present study, the physiological functions of AtPTBs wereinvestigated using genetic and cytological approaches. The AtPTBpromoter was highly active in vegetative cells of mature pollengrains, and AtPTB was localized in the nucleus and cytoplasmof these vegetative cells. Mutations in the AtPTB genes resultedin decreased germination efficiency, and this effect was rescuedby introduction of the AtPTB2 promoter::AtPTB2–GFP. Takentogether, these findings suggest that AtPTB is involved in pollengermination through possible RNA metabolism processes in late-maturingand mature pollen grains.  相似文献   

8.
Barbiturates inhibit GLUT-1-mediated glucose transport across the blood-brain barrier, in cultured mammalian cells, and in human erythrocytes. Barbiturates also interact directly with GLUT-1. The hypotheses that this inhibition of glucose transport is (i) selective, preferring barbiturates over halogenated hydrocarbon inhalation anesthetics, and (ii) specific, favoring some GLUT-# isoforms over others were tested. Several oxy- and thio-barbiturates inhibited [3H]-2-deoxyglucose uptake by GLUT-1 expressing murine fibroblasts with IC50s of 0.2–2.9 mm. Inhibition of GLUT-1 by barbiturates correlates with their overall lipid solubility and pharmacology, and requires hydrophobic side chains on the core barbiturate structure. In contrast, several halogenated hydrocarbons and ethanol (all ≤10 mm) do not significantly inhibit glucose transport. The interaction of these three classes of anesthetics with purified GLUT-1 was evaluated by quenching of intrinsic protein fluorescence and displayed similar specificities and characteristics. The ability of barbiturates to inhibit other facilitative glucose transporters was determined in cell types expressing predominantly one isoform. Pentobarbital inhibits [3H]-2-deoxyglucose and [14C]-3-O-methyl-glucose uptake in cells expressing GLUT-1, GLUT-2, and GLUT-3 with IC50s of ∼1 mm. In contrast, GLUT-4 expressed in insulin-stimulated rat adipocytes was much less sensitive than the other isoforms to inhibition by pentobarbital (IC50 of >10 mm). Thus, barbiturates selectively inhibit glucose transport by some, but not all, facilitative glucose transporter isoforms. Received: 10 November 1998/Revised: 3 February 1999  相似文献   

9.
10.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

11.
In translation, separate aminoacyl-tRNA synthetases attach the 20 different amino acids to their cognate tRNAs, with the exception of glutamine. Eukaryotes and some bacteria employ a specific glutaminyl-tRNA synthetase (GlnRS) which other Bacteria, the Archaea (archaebacteria), and organelles apparently lack. Instead, tRNAGln is initially acylated with glutamate by glutamyl-tRNA synthetase (GluRS), then the glutamate moiety is transamidated to glutamine. Lamour et al. [(1994) Proc Natl Acad Sci USA 91:8670–8674] suggested that an early duplication of the GluRS gene in eukaryotes gave rise to the gene for GlnRS—a copy of which was subsequently transferred to proteobacteria. However, questions remain about the occurrence of GlnRS genes among the Eucarya (eukaryotes) outside of the ``crown' taxa (animals, fungi, and plants), the distribution of GlnRS genes in the Bacteria, and their evolutionary relationships to genes from the Archaea. Here, we show that GlnRS occurs in the most deeply branching eukaryotes and that putative GluRS genes from the Archaea are more closely related to GlnRS and GluRS genes of the Eucarya than to those of Bacteria. There is still no evidence for the existence of GlnRS in the Archaea. We propose that the last common ancestor to contemporary cells, or cenancestor, used transamidation to synthesize Gln-tRNAGln and that both the Bacteria and the Archaea retained this pathway, while eukaryotes developed a specific GlnRS gene through the duplication of an existing GluRS gene. In the Bacteria, GlnRS genes have been identified in a total of 10 species from three highly diverse taxonomic groups: Thermus/Deinococcus, Proteobacteria γ/β subdivision, and Bacteroides/Cytophaga/Flexibacter. Although all bacterial GlnRS form a monophyletic group, the broad phyletic distribution of this tRNA synthetase suggests that multiple gene transfers from eukaryotes to bacteria occurred shortly after the Archaea–eukaryote divergence.  相似文献   

12.
Photofrin II is a photosensitizer frequently applied in photodynamic therapy. Light-induced tumor cell inactivation observed in the presence of this substance has been suggested to start with modifications at the level of cellular membranes. In the present study electrophysiological techniques are applied in order to investigate the action of photofrin II on functional properties of the plasma membrane of opossum kidney (OK) cells (as an epithelial model system) and of fibroblasts. Illumination of the cells in the presence of photofrin II (or Zn-phthalocyanine) leads to comparatively fast depolarization of the membrane potential. It is caused by a strong change of the membrane conductance which proceeds in two phases. Both phases contribute to a loss of ion selectivity of the plasma membrane between K+ and Na+. In the first phase, specific pathways for K+, which determine the resting potential under physiological conditions, are inactivated. The second phase is distinguished by a marked increase of a nonselective conductance. The increase of the latter — after light-induced initiation — continues in the dark. The conclusions are derived from light-induced, time-dependent changes of the membrane conductance and of the shape of the current-voltage relationship detected under different experimental conditions. Received: 26 May 1998/Revised: 8 September 1998  相似文献   

13.
14.
15.
This paper analyses the compositional correlations that hold in the chicken genome. Significant linear correlations were found among the regions studied—coding sequences (and their first, second, and third codon positions), flanking regions (5′ and 3′), and introns—as is the case in the human genome. We found that these compositional correlations are not limited to global GC levels but even extend to individual bases. Furthermore, an analysis of 1037 coding sequences has confirmed a correlation among GC3, GC2, and GC1. The implications of these results are discussed. Received: 9 December 1998 / Accepted: 18 April 1999  相似文献   

16.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   

17.
While globin genes ctt-2β and ctt-9.1 in Chironomus thummi thummi each have a single intron, all of the other insect globin genes reported so far are intronless. We analyzed four globin genes linked to the two intron-bearing genes in C. th. thummi. Three have a single intron at the same position as ctt-2β and ctt-9.1; the fourth is intronless and lies between intron bearing genes. Finally, in addition to its intron, one gene (ctt-13RT) was recently interrupted by retrotransposition. Phylogenetic analyses show that the six genes in C. th. thummi share common ancestry with five globin genes in the distantly related species C. tentans, and that a 5-gene ancestral cluster predates the divergence of the two species. One gene in the ancestral cluster gave rise to ctn-ORFB in C. tentans, and duplicated in C. th. thummi to create ctt-11 and ctt-12. From parsimonious calculations of evolutionary distances since speciation, ctt-11, ctt-12, and ctn-ORFB evolved rapidly, while ctn-ORFE in C. tentans evolved slowly compared to other globin genes in the clusters. While these four globins are under selective pressure, we suggest that most chironomid globin genes were not selected for their unique function. Instead, we propose that high gene copy number itself was selected because conditions favored organisms that could synthesize more hemoglobin. High gene copy number selection to produce more of a useful product may be the basis of forming multigene families, all of whose members initially accumulate neutral substitutions while retaining essential function. Maintenance of a large family of globin genes not only ensured high levels of hemoglobin production, but may have facilitated the extensive divergence of chironomids into as many as 5000 species. Received: 31 December 1996 / Accepted: 16 May 1997  相似文献   

18.
The β-globin gene cluster of Wistar rat was extensively cloned and the embryonic genes were mapped and sequenced. Four overlapping λ Dash recombinant clones cover about 31 kb and contain four nonadult β-globin genes, 5′–ε1–γ1–γ2–ψγ3–3′. The ε1 and γ2 are active genes, since their protein products were detected in the fetal stage of the rat (Iwahara et al., J Biochem 119:360–366, 1996). The γ1 locus might be a pseudogene, since the ATA box in the promoter region is mutated to GTA; however, no other defect is observed. The ψγ3 locus is a truncated pseudogene because a 19-base deletion, which causes a shift of the reading frame, is observed between the second nucleotide of the putative codon 68 and codon 76. A sequence comparison suggests that the ψγ3 might be produced by a gene conversion event of the proto-γ-globin gene set. Possible histories of the evolution of rat nonadult β-globin genes are discussed. Received: 6 August 1998 / Accepted: 12 February 1999  相似文献   

19.
Cystic Fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel found in apical membranes of wet epithelia. Since CFTR is permeable to HCO 3 and changes in extracellular fluid composition may contribute to CF lung disease, we investigated possible differences in extracellular pH (pHo) between CFTR-expressing and control cell lines. The Cytosensor™ Microphysiometer was used to study forskolin-stimulated extracellular acidification rates in CFTR-expressing and control mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. Forskolin, which activates CFTR via raised cAMP, caused decreased extracellular acidification of CFTR-expressing NIH/3T3 and C127 cells by 15–35%. By contrast, forskolin caused increased extracellular acidification of control cells by 10–20%. Ionomycin, which may activate CFTR via PKC, also elicited this decreased extracellular acidification signal only in cells expressing CFTR. In control experiments, dideoxyforskolin had no effect on the acidification rates and osmotic stimuli were shown to equally stimulate all cell lines. These results suggest a role for CFTR in controlling pHo and complement recent evidence that HCO 3 dependent epithelial secretion may be reduced in amount and altered in composition in CF. Received: 20 June 2000/Revised: 13 November 2000  相似文献   

20.
We analyzed nucleotide variation in the hsp70 genes of Drosophila melanogaster (five genes) and D. simulans (four genes) to characterize the homogenizing and diversifying roles of gene conversion in their evolution. Gene conversion within and between the 87A7 and 87C1 gene clusters homogenize the hsp70 coding regions; in both D. melanogaster and D. simulans, same-cluster paralogues are virtually identical, and large intercluster conversion tracts diminish 87A7/87C1 divergence. Same-cluster paralogues share many polymorphisms, consistent with frequent intracluster conversion. Shared polymorphism is highly biased toward silent variation; homogenizing conversion interacts with purifying selection. In contrast to the coding regions, some hsp70 flanking regions show conversion-mediated diversification. Strong reductions of nucleotide variability and linkage disequilibria among conversion-mediated sites in hsp70Ab and hsp70Bb alleles sampled from a single natural population are consistent with a selective sweep. Comparison of the D. melanogaster and D. simulans hsp70 genes reveals whole-family fixed differences, consistent with rapid propagation of novel mutations among duplicate genes. These results suggest that the homogenizing and diversifying roles of conversion interact to drive dynamic concerted evolution of the hsp70 genes. Received: 25 June 2001 / Accepted: 10 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号