首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbes utilize enzymes to perform a variety of functions. Enzymes are biocatalysts working as highly efficient machines at the molecular level. In the past, enzymes have been viewed as static entities and their function has been explained on the basis of direct structural interactions between the enzyme and the substrate. A variety of experimental and computational techniques, however, continue to reveal that proteins are dynamically active machines, with various parts exhibiting internal motions at a wide range of time-scales. Increasing evidence also indicates that these internal protein motions play a role in promoting protein function such as enzyme catalysis. Moreover, the thermodynamical fluctuations of the solvent, surrounding the protein, have an impact on internal protein motions and, therefore, on enzyme function. In this review, we describe recent biochemical and theoretical investigations of internal protein dynamics linked to enzyme catalysis. In the enzyme cyclophilin A, investigations have lead to the discovery of a network of protein vibrations promoting catalysis. Cyclophilin A catalyzes peptidyl-prolyl cis/trans isomerization in a variety of peptide and protein substrates. Recent studies of cyclophilin A are discussed in detail and other enzymes (dihydrofolate reductase and liver alcohol dehydrogenase) where similar discoveries have been reported are also briefly discussed. The detailed characterization of the discovered networks indicates that protein dynamics plays a role in rate-enhancement achieved by enzymes. An integrated view of enzyme structure, dynamics and function have wide implications in understanding allosteric and co-operative effects, as well as protein engineering of more efficient enzymes and novel drug design.  相似文献   

2.
Penicillin-binding proteins (PBPs) have been scrutinized for over 40 years. Recent structural information on PBPs together with the ongoing long-term biochemical experimental investigations, and results from more recent techniques such as protein localization by green fluorescent protein-fusion immunofluorescence or double-hybrid assay, have brought our understanding of the last stages of the peptidoglycan biosynthesis to an outstanding level that allows a broad outlook on the properties of these enzymes. Details are emerging regarding the interaction between the peptidoglycan-synthesizing PBPs and the peptidoglycan, their mesh net-like product that surrounds and protects bacteria. This review focuses on the detailed structure of PBPs and their implication in peptidoglycan synthesis, maturation and recycling. An overview of the content in PBPs of some bacteria is provided with an emphasis on comparing the biochemical properties of homologous PBPs (orthologues) belonging to different bacteria.  相似文献   

3.
Tyvelose is a 3,6-dideoxyhexose found in the O-antigen of the surface lipopolysaccharides of some pathogenic bacteria. It is synthesized via a complex biochemical pathway that is initiated by the formation of CDP-D-glucose. The production of this ligand is catalyzed by the enzyme glucose-1-phosphate cytidylyltransferase, which utilizes alpha-D-glucose 1-phosphate and MgCTP as substrates. Previous x-ray crystallographic investigations have demonstrated that the Salmonella typhi enzyme complexed with the product CDP-glucose is a fully integrated hexamer displaying 32 point group symmetry. The binding pocket for CDP-glucose is shared between two subunits. Here we describe both a detailed kinetic analysis of the cytidylyltransferase and a structural investigation of the enzyme complexed with MgCTP. These data demonstrate that the reaction catalyzed by the cytidylyltransferase proceeds via a sequential rather than a Bi Bi ping-pong mechanism as was previously reported. Additionally, the enzyme utilizes both CTP and UTP equally well as substrates. The structure of the enzyme with bound MgCTP reveals that the binding pocket for the nucleotide is contained within one subunit rather than shared between two. Key side chains involved in nucleotide binding include Thr(14), Arg(15), Lys(25), and Arg(111). In the previous structure of the enzyme complexed with CDP-glucose, those residues defined by Thr(14) to Ile(21) were disordered. The kinetic and x-ray crystallographic data presented here support a mechanism for this enzyme that is similar to that reported for the glucose-1-phosphate thymidylyltransferases.  相似文献   

4.
H A Schreuder  W G Hol  J Drenth 《Biochemistry》1990,29(12):3101-3108
The flavoprotein p-hydroxybenzoate hydroxylase has been studied extensively by biochemical techniques by others and in our laboratory by X-ray crystallography. As a result of the latter investigations, well-refined crystal structures are known of the enzyme complexed (i) with its substrate p-hydroxybenzoate and (ii) with its reaction product 3,4-dihydroxybenzoate and (iii) the enzyme with reduced FAD. Knowledge of these structures and the availability of the three-dimensional structure of a model compound for the reactive flavin 4a-hydroperoxide intermediate has allowed a detailed analysis of the reaction with oxygen. In the model of this reaction intermediate, fitted to the active site of p-hydroxybenzoate hydroxylase, all possible positions of the distal oxygen were surveyed by rotating this oxygen about the single bond between the C4a and the proximal oxygen. It was found that the distal oxygen is free to sweep an arc of about 180 degrees in the active site. The flavin 4a-peroxide anion, which is formed after reaction of molecular oxygen with reduced FAD, might accept a proton from an active-site water molecule or from the hydroxyl group of the substrate. The position of the oxygen to be transferred with respect to the substrate appears to be almost ideal for nucleophilic attack of the substrate onto this oxygen. The oxygen is situated above the 3-position of the substrate where the substitution takes place, at an angle of about 60 degrees with the aromatic plane, allowing strong interactions with the pi electrons of the substrate. Polarization of the peroxide oxygen-oxygen bond by the enzyme may enhance the reactivity of flavin 4a-peroxide.  相似文献   

5.
Duck hepatitis B virus (DHBV) shares many fundamental features with human HBV. However, the DHBV core protein (DHBc), forming the nucleocapsid shell, is much larger than that of HBV (HBc) and, in contrast to HBc, there is little direct information on its structure. Here we applied an efficient expression system for recombinant DHBc particles to the biochemical analysis of a large panel of mutant DHBc proteins. By combining these data with primary sequence alignments, secondary structure prediction, and three-dimensional modeling, we propose a model for the fold of DHBc. Its major features are a HBc-like two-domain structure with an assembly domain comprising the first about 185 amino acids and a C-terminal nucleic acid binding domain (CTD), connected by a morphogenic linker region that is longer than in HBc and extends into the CTD. The assembly domain shares with HBc a framework of four major α-helices but is decorated at its tip with an extra element that contains at least one helix and that is made up only in part by the previously predicted insertion sequence. All subelements are interconnected, such that structural changes at one site are transmitted to others, resulting in an unexpected variability of particle morphologies. Key features of the model are independently supported by the accompanying epitope mapping study. These data should be valuable for functional studies on the impact of core protein structure on virus replication, and some of the mutant proteins may be particularly suitable for higher-resolution structural investigations.  相似文献   

6.
Glycolysis is the best known biochemical oscillator and suitable for the exploration of the basic features of biological rhythms on a biochemical and mathematical level. Because of our detailed knowledge of its component structure (enzyme kinetics, metabolite pattern) glycolysis can be described by a set of coupled nonlinear differential equations of first order with respect to time, whose individual terms consist of enzyme velocities assuming a steady state hypothesis for the enzymatic forms. Due to the feedback control of PFK by the adenylates the system is able to oscillate. The outcomes of a simplified model, containing only the basic elements of glycolysis, show good agreements with experimental results.  相似文献   

7.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

8.
9.
Inferring protein functions from structures is a challenging task, as a large number of orphan protein structures from structural genomics project are now solved without their biochemical functions characterized. For proteins binding to similar substrates or ligands and carrying out similar functions, their binding surfaces are under similar physicochemical constraints, and hence the sets of allowed and forbidden residue substitutions are similar. However, it is difficult to isolate such selection pressure due to protein function from selection pressure due to protein folding, and evolutionary relationship reflected by global sequence and structure similarities between proteins is often unreliable for inferring protein function. We have developed a method, called pevoSOAR (pocket-based evolutionary search of amino acid residues), for predicting protein functions by solving the problem of uncovering amino acids residue substitution pattern due to protein function and separating it from amino acids substitution pattern due to protein folding. We incorporate evolutionary information specific to an individual binding region and match local surfaces on a large scale with millions of precomputed protein surfaces to identify those with similar functions. Our pevoSOAR method also generates a probablistic model called the computed binding a profile that characterizes protein-binding activities that may involve multiple substrates or ligands. We show that our method can be used to predict enzyme functions with accuracy. Our method can also assess enzyme binding specificity and promiscuity. In an objective large-scale test of 100 enzyme families with thousands of structures, our predictions are found to be sensitive and specific: At the stringent specificity level of 99.98%, we can correctly predict enzyme functions for 80.55% of the proteins. The overall area under the receiver operating characteristic curve measuring the performance of our prediction is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is 86.6%. Our method also works well in predicting the biochemical functions of orphan proteins from structural genomics projects.  相似文献   

10.
The role and historical progress of n.m.r. applications in biochemistry are briefly outlined. Technical advances over the years have made n.m.r., at last, a technique which can give valuable information about a wide range of biochemical topics, from enzyme kinetics in vivo to the structure of protein-DNA complexes. Emphasis here is placed on studies of proteins, especially those made up from mosaics of modules. It is shown that n.m.r. can readily give detailed structural information about individual protein modules and that valuable information about the structure and function of the intact mosaic protein can be inferred.  相似文献   

11.
12.
Proteins are intrinsically flexible molecules. The role of internal motions in a protein''s designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.

Author''s Summary

Enzymes are nature''s molecular machines that catalyze biochemical reactions with remarkable efficiency. Recent evidence suggests that enzyme function may involve not only direct structural interactions between the enzyme and its substrate, but also internal motions of the enzyme itself. Here, we describe a computational investigation of three classes of enzymes that catalyze completely different biochemical reactions. Remarkably, the mobile enzyme regions and the nature of these motions are the same across species ranging from single-celled organisms to complex life-forms. Also surprisingly, non-homologous enzymes that catalyze the same chemical reaction but do not share sequence or structural similarity reveal a similar impact of enzyme motions on their reaction mechanisms. Flexible enzyme regions are found to be connected by conserved networks of coupled interactions that connect surface regions to active-site residues. These networks may provide a mechanism for the solvent on an enzyme''s surface to couple to the reaction catalyzed by the enzyme. These results have implications for understanding the mechanism of allostery (long-range effects), and for protein engineering and drug design.  相似文献   

13.
Bacterial L-asparaginases (E.C. 3.5.1.1) have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia. L-asparaginase from Erwinia carotovora NCYC 1526 (ErA) was cloned and expressed in E. coli. The enzyme was purified to homogeneity by a two-step procedure comprising cation-exchange chromatography and affinity chromatography on immobilised L-asparagine. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. Molecular modelling studies were also employed to create a model of ErA, based on the known structure of the Erwinia chrysanthemi enzyme. The molecular model was used to help interpret biochemical data concerning substrate specificity and catalytic mechanism of the enzyme. The kinetic parameters of selected substrates were determined at various pH values, and the pH-dependence profiles of V(max) and V(max)/K(m) were analyzed. The pH-dependence of V(max) shows one transition in the acidic pH range with pK(a)=5.4, and the pH-dependence of V(max)/K(m) exhibits two transitions with pK(a)=5.4 and 8.5. Based on analysis of alternative substrates and molecular modelling studies, it was concluded that the pK(a) at the acidic pH range corresponds to the active site residues Asp115 or Glu82, whereas the pK(a) observed at the alkaline pH range is not due to substrate amino group ionisation, but rather is the result of enzyme ionisation. The effect of temperature and viscosity on the catalytic activity of the enzyme was also investigated and it was concluded that the rate-limiting step of the catalytic reaction is relevant to structural transitions of the protein. Thermodynamic analysis of the activity data showed that the activation energies are dependent on the substrate, and entropy changes appear to be the main determinant contributing to substrate specificity.  相似文献   

14.
Aspartate carbamoyltransferase (EC 2.1.3.2) is extensively studied as a model for cooperativity and allosteric regulation. The structure of the Escherichia coli enzyme has been thoroughly analyzed by X-ray crystallography, and recently the crystal structures of two hyperthermophilic ATCases of the same structural class have been characterized. We here report the detailed functional and structural investigation of the ATCase from the psychrophilic deep sea bacterium Moritella profunda. Our analysis indicates that the enzyme conforms to the E. coli model in that two allosteric states exist that are influenced by similar homotropic interactions. The heterotropic properties differ in that CTP and UTP inhibit the holoenzyme, but ATP seems to exhibit a dual regulatory pattern, activating the enzyme at low concentrations and inhibiting it in the mM range. The crystal structure of the unliganded M. profunda ATCase shows resemblance to a more extreme T state reported previously for an E. coli ATCase mutant. A detailed molecular analysis reveals potential features of adaptation to cold activity and cold regulation. Moreover, M. profunda ATCase presents similarities with certain mutants of E. coli ATCase altered in their kinetic properties or temperature relationships. Finally, structural and functional comparison of ATCases across the full physiological temperature range agrees with an important, but fundamentally different role for electrostatics in protein adaptation at both extremes, i.e. an increased stability through the formation of ion pairs and ion pair networks at high physiological temperatures, and an increased flexibility through enhanced protein solvation at low temperatures.  相似文献   

15.
Bell JK  Grant GA  Banaszak LJ 《Biochemistry》2004,43(12):3450-3458
Phosphoglycerate dehydrogenase (PGDH) catalyzes the first step in the serine biosynthetic pathway. In lower plants and bacteria, the PGDH reaction is regulated by the end-product of the pathway, serine. The regulation occurs through a V(max) mechanism with serine binding and inhibition occurring in a cooperative manner. The three-dimensional structure of the serine inhibited enzyme, determined by previous work, showed a tetrameric enzyme with 222 symmetry and an unusual overall toroidal appearance. To characterize the allosteric, cooperative effects of serine, we identified W139G PGDH as an enzymatically active mutant responsive to serine but not in a cooperative manner. The position of W139 near a subunit interface and the active site cleft suggested that this residue is a key player in relaying allosteric effects. The 2.09 A crystal structure of W139G-PGDH, determined in the absence of serine, revealed major quaternary and tertiary structural changes. Contrary to the wildtype enzyme where residues encompassing residue 139 formed extensive intersubunit contacts, the corresponding residues in the mutant were conformationally flexible. Within each of the three-domain subunits, one domain has rotated approximately 42 degrees relative to the other two. The resulting quaternary structure is now in a novel conformation creating new subunit-to-subunit contacts and illustrates the unusual flexibility in this V(max) regulated enzyme. Although changes at the regulatory domain interface have implications in other enzymes containing a similar regulatory or ACT domain, the serine binding site in W139G PGDH is essentially unchanged from the wildtype enzyme. The structural and previous biochemical characterization of W139G PGDH suggests that the allosteric regulation of PGDH is mediated not only by changes occurring at the ACT domain interface but also by conformational changes at the interface encompassing residue W139.  相似文献   

16.
Ferrochelatase, the last enzyme of the heme biosynthetic pathway, has for years been considered to be active as a monomer. The crystal structure of Bacillus subtilis ferrochelatase confirmed its monomeric structure. However, animal ferrochelatase was found to form a functional dimer. Data presented here indicate that ferrochelatase from the yeast Saccharomyces cerevisiae is also dimeric. Following two-hybrid studies that had shown an interaction of two ferrochelatase molecules, we employed several different, complementary approaches, such as chemical crosslinking, affinity chromatography, and complementation analysis, to prove that in the yeast cells ferrochelatase forms an active dimer. We have isolated a double mutant, hem15D246V/Y248F, which is probably dimerization-defective. We propose a structural model of yeast ferrochelatase, based on the known structure of the human enzyme, which helps us to understand the differences in dimerization between the wild-type and mutant proteins.  相似文献   

17.
Abstract

Adenylosuccinate synthetase from Saccharomyces cerevisiae was investigated in order to find a structural explanation for its ability to bind specifically to single-stranded ARS elements (autonomously replicating sequences). Using the E. coli enzyme as template, a model for the structure of adenylosuccinate synthetase from S. cerevisiae was generated and subsequently refined by molecular dynamics techniques.

The resulting three-dimensional structure offers an explanation for the DNA binding activity of the yeast enzyme by revealing a distinct basic region that is not present in the homologous enzymes from other organisms.

The model is also in good agreement with biochemical data available for a mutant protein in which Glycine 252 is replaced by Aspartate. On the basis of the model a significant structural distortion near the catalytic center was predicted for this mutant, corresponding well to the enzymatic inactivity observed. The mutant enzyme shows larger structural fluctuations than the wild-type protein according to the results of two independent molecular dynamics simulations.  相似文献   

18.
The flavivirus 2′-O-nucleoside N-terminal RNA methyltransferase (MTase) enzyme is responsible for methylating the viral RNA cap structure. To increase our understanding of the mechanism of viral RNA cap binding we performed a detailed structural and biochemical characterization of the guanosine cap-binding pocket of the dengue (DEN) and yellow fever (YF) virus MTase enzymes. We solved an improved 2.1 Å resolution crystal structure of DEN2 Mtase, new 1.5 Å resolution crystal structures of the YF virus MTase domain in apo form, and a new 1.45 Å structure in complex with guanosine triphosphate and RNA cap analog. Our structures clarify the previously reported DEN MTase structure, suggest novel protein-cap interactions, and provide a detailed view of guanine specificity. Furthermore, the structures of the DEN and YF proteins are essentially identical, indicating a large degree of structural conservation amongst the flavivirus MTases. Guanosine triphosphate analog competition assays and mutagenesis analysis, performed to analyze the biochemical characteristics of cap binding, determined that the major interaction points are (i) guanine ring via π−π stacking with Phe24, N1 hydrogen interaction with the Leu19 backbone carbonyl via a water bridge, and C2 amine interaction with Leu16 and Leu19 backbone carbonyls; (ii) ribose 2′ hydroxyl interaction with Lys13 and Asn17; and (iii) α-phosphate interactions with Lys28 and Ser215. Based on our mutational and analog studies, the guanine ring and α-phosphate interactions provide most of the energy for cap binding, while the combination of the water bridge between the guanine N1 and Leu19 carbonyl and the hydrogen bonds between the C2 amine and Leu16/Leu19 carbonyl groups provide for specific guanine recognition. A detailed model of how the flavivirus MTase protein binds RNA cap structures is presented.  相似文献   

19.
《Molekuliarnaia biologiia》2005,39(3):488-496
After complexation of DNA with enzymes a specific adaptation of DNA structure including its partial or nearly complet melting, change of sugar-phosphate backbone structure, stretching, compression, bending or kinking, flipping out of nucleotides from the DNA helix, etc. take place. The full set of such changes is specific for each individual enzyme and is a very important for effective adjustment of reacting orbitals of enzyme and specific DNA atoms with accuracy up to 10-15 degrees. Efficiency of DNA sequence adaptation in the direction providing by enzyme depends on many specific structural characteristics of DNA. Maximal adjustment of DNA structure can be achieved only for specific sequences, therefore on going from nonspecific to specific DNAs the increase of the catalytic rate by 4-8 orders of magnitude takes place. DNA topoisomerase I is a sequence-dependent enzyme, but it can cleave with lower efficiency DNA sequences, which are significantly different from an optimal one. We have carried out the computer analysis of structural characteristics of many DNA sequences utilizing by topoisomerase using the method which is based on the analysis of conformational and physico-chemical characteristics of DNA helix and gives a detailed information about similarities or differences of DNA structural units. In addition to such characteristics as base tilt angle, shift of base pair, helix steering angle, and helix step for all cleaved sequences the presence of sterically disadvantageous contacts in small grove between N3 and NH2 of guanines and N3 of adenines were detected which corresponds to the presence Py-Pu dinucleotides in the cleavaged site. In addition, for optimal sequences bending of DNA helix toward major groove is characterized. The proposed method seems to be a very perspective for the analysis of an efficiency of nucleic acids cleavage by different DNA- and RNA-dependent enzymes.  相似文献   

20.
Esterase 2 (EST2) from the thermophilic eubacterium Alicyclobacillus acidocaldarius is a thermostable serine hydrolase belonging to the H group of the esterase/lipase family. This enzyme hydrolyzes monoacylesters of different acyl-chain length and various compounds with industrial interest. EST2 displays an optimal temperature at 70 degrees C and maximal activity with pNP-esters having acyl-chain bearing from six to eight carbon atoms. EST2 mutants with different substrate specificity were also designed, generated by site-directed mutagenesis, and biochemically characterized. To better define at structural level the enzyme reaction mechanism, a crystallographic analysis of one of these mutants, namely M211S/R215L, was undertaken. Here we report its three-dimensional structure at 2.10A resolution. Structural analysis of the enzyme revealed an unexpected dimer formation as a consequence of a domain-swapping event involving its N-terminal region. This phenomenon was absent in the case of the enzyme bound to an irreversible inhibitor having optimal substrate structural features. A detailed comparison of the enzyme structures before and following binding to this molecule showed a movement of the N-terminal helices resulting from a trans-cis isomerization of the F37-P38 peptide bond. These findings suggest that this carboxylesterase presents two distinct structural arrangements reminiscent of the open and closed forms already reported for lipases. Potential biological implications associated with the observed quaternary reorganization are here discussed in light of the biochemical properties of other lipolytic members of the H group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号