首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

2.
The involvement of the early signaling messengers, inositol tris-phosphate (IP3), intracellular calcium, [Ca2+]i, and protein kinase C (PKC), in angiotensin II (AII)-induced fluid phase endocytosis was investigated in human brain capillary and microvascular endothelial cells (HCEC). AII (0.01–10 μM) stimulated the uptake of Lucifer yellow CH, an inert dye used as a marker for fluid phase endocytosis, in HCEC by 50–230%. AII also triggered a fast accumulation of IP3 and a rapid increase in [Ca2+]i in cells loaded with the Ca2+-responsive fluorescent dye fura-2. The prompt AII-induced [Ca2+]i spike was not affected by incubating HCEC in Ca2+-free medium containing 2 mM EGTA or by pretreating the cultures with the Ca2+ channel blockers, methoxyverapamil (D600; 50 μM), nickel (1 mM), or lanthanum (1 mM), suggesting that the activation of AII receptors on HCEC triggers the release of Ca2+ from intracellular stores. The AII-triggered increases in IP3, [Ca2+]i, and Lucifer yellow uptake were inhibited by the nonselective AII receptor antagonist, Sar1, Val5, Ala8-AII (SVA-AII), and by the phospholipase C (PLC) inhibitors, neomycin and U-73122. By contrast, the protein kinase C (PKC) inhibitors, staurosporine and calphostin C, failed to affect any of these AII-induced events. This study demonstrates that increased fluid phase endocytotosis induced by AII in human brain capillary endothelium, an event thought to be linked to the observed increases in blood-brain barrier permeability in acute hypertension, is likely dependent on PLC-mediated changes in [Ca2+]i and independent of PKC. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Inositol phosphate formation was examined in aluminium-treated murine neuroblastoma cells labelled with [3H]-myoinositol. Employing fluoride-stimulated intact cells, aluminium (0.2M to 1 mM) reduced inositol phosphate formation in a dose-dependent manner. In digitonin-permeabilized cells, stimulated with nonhydrolyzable GTP[S], inositol phosphate formation was also inhibited by increasing aluminium doses; the IC50 value was about 20M aluminium, while the inositol phosphate level was reduced 2.5 to 3 fold by 50M aluminium. The inhibitory effect of aluminium (50M) could not be reversed by increasing GTP[S] concentrations up to 500M. Prechelation of aluminium to citrate or EGTA completely abolished the aluminium-triggered inhibition of fluoride-stimulated inositol phosphate formation in intact cells, but had little effect on the inhibition of permeabilized cells stimulated with GTP[S]. In neuroblastoma cells phosphoinositide hydrolysis could be evoked either through a pathway involving the Mg2+/guanine nucleotide binding (Gp) protein, or via a pathway operative in the presence of high intracellular Ca2+ concentrations. In the Mg2+/Gp protein-mediated pathway, formation of inositol triphosphate, IP3, inositol diphosphate, IP2, and inositol monophosphate, IP, was apparently inhibited by aluminium in an interdependent manner. As to the Ca2+-mediated pathway, aluminium application mainly diminished the release of IP3. Following interiorization, aluminium thus acts upon elements critical for phosphoinositide-associated signal transduction. An aluminium target apparently resides on the Gp protein. Phosphatidylinositol-4,5-diphosphate-specific phospholipase C probably harbours a second aluminium target.  相似文献   

4.
It is known that inositol (1, 4, 5)-trisphosphate (IP3) stimulates Ca2+ release from sarcoplasmic reticulum (SR) in several tissues, but in cardiac myocytes this phenomenon has not been confirmed. The purpose of the present study was to confirm the effect of (1, 4, 5)-IP3 on Ca2+ release from SR in cardiac myocytes. The effect of IP3 on Ca2+ release from SR in hypertrophic cardiac cells was also determined.We examined the effects of IP3 on Ca2+ release from cardiac myocyte SR by the bigital-image method in a single cell. We also determined the effect of IP3 on calcium release from isolated SR. SR was prepared from spontaneous hypertensive rat hearts and Wistar kyoto rat hearts. The SR was prelabeled with45Ca2+, and then incubated with the indicated concentrations of IP3 for 1 min at 37°C. In cardiac myocytes treated with saponin, Ca2+ release stimulated by 10 M (1, 4, 5)-IP3 was detected by fura-2. In45Ca2+ prelabeled SR, the maximal Ca2+ release was achieved at 10 M IP3 incubated for 1 min. The release of Ca2+ was higher in Sr of SHR than in the SR of WKY. IP3 stimulates Ca2+ release from cardiac SR, and this release is greater in SHR than in WKY. However, it is uncertain whether this phenomenon plays a role in cardiac hypertrophy.  相似文献   

5.
The phospholipid requirement for Ca2+-stimulated, Mg2+-dependent ATP hydrolysis (Ca2+/Mg2+-ATPase) and Mg2+-stimulated ATP hydrolysis (Mg2+-ATPase) in rat brain synaptosomal membranes was studied employing partial delipidation of the membranes with phospholipase A2 (Hog pancreas), phospholipase C (Bacillus cereus) and phospholipase D (cabbage). Treatment with phospholipase A2 caused an increase in the activities of both Ca2+/Mg2+-ATPase and Mg2+-ATPase whereas with phospholipase C treatment both the enzyme activities were inhibited. Phospholipase D treatment had no effect on Ca2+/Mg2+-ATPase but Mg2+-ATPase activity was inhibited. Inhibition of Mg2+-ATPase activity after phospholipase C treatment was relieved with the addition of phosphatidylinositol-4,5-bisphosphate (PIP2) and to a lesser extent with phosphatidylinositol-4-phosphate (PIP) and phosphatidylcholine (PC). Phosphatidylserine (PS), phosphatidic acid (PA), PIP and PIP2 brought about the reactivation of Ca2+/Mg2+-ATPase. Phosphatidylinositol (PI) and PA inhibited Mg2+-ATPase activity.K ms for Ca2+ (0.47 M) and Mg2+ (60 M) of the enzyme were found to be unaffected after treatment with the phospholipases.  相似文献   

6.
Inositol 1,4,5-trisphosphate (IP3) was found to release Ca2+ from presynaptic nerve endings (synaptosomes) made permeable with saponin. ATP-dependent Ca2+ uptake was carried out until equilibrium was reached. Addition of IP3 produced a rapid release of Ca2+, which was complete within 60 sec, followed by Ca2+ reaccumulation to the original level in 5–7 min. Cholinergic receptor stimulation with muscarine also produced a similar Ca2+ release from synaptic endoplasmic reticulum. Ca2+ release by IP3 was not detectable in the absence of the mitochondrial inhibitors oligomycin or sodium azide. Reaccumulation of Ca2+ was prevented by the presence of vanadate, a potent inhibitor of Ca2+/Mg2+ ATPase. Half maximal and near complete release of Ca2+ took place at 0.4 M and 3 M IP3 concentrations, respectively. These studies demonstrate for the first time IP3 mobilization of Ca2+ from endoplasmic reticulum within synaptic plasma membranes.  相似文献   

7.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PACAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3′,5′-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.  相似文献   

8.
The ability of ANP to inhibit the hydrolysis of phosphoinositides was examined in [3H] myoinositol-labeled intact murine Leydig tumor (MA-10) cells. Arginine vasopressin (AVP) stimulated the formation of inositol monophosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) both in a time- and dose- dependent manner in MA-10 cells. ANP inhibited the AVP-induced formation of IP1, IP2, and IP3 in these cells. The inhibitory effect of ANP on the AVP-stimulated formation of IP1, IP2, and IP3 accounted for 30%, 38% and 42%, respectively, which was observed at the varying concentrations of AVP. ANP caused a dose-dependent attenuation in AVP-stimulated production of IP1, IP2 and IP3 with maximum inhibition at 100 nM concentration of ANP. The production of inositol phosphates was inhibited in the presence of 8- bromo cGMP in a dose-dependent manner, whereas dibutyryl-cAMP had no effect on the generation of these metabolites. The LY 83583, an inhibitor of guanylyl cyclase and cGMP production, abolished the inhibitory effect of ANP on the AVP-stimulated production of inositol phosphates. Furthermore, 10 M LY 83583 also inhibited the ANP-stimulated guanylyl cyclase activity and the intracellular accumulation of cGMP by more than 65–70%. The inhibition of eGMP-dependent protein kinase by H-8, significantly restored the levels of AVP-stimulated inositol phosphates in the presence of either ANP or exogenous 8-bromo cGMP. The results of this study suggest that ANP exerts an inhibitory effect on the production of inositol phosphates in murine Leydig tumor (MA-10) cells by mechanisms involving cGMP and cGMP-dependent protein kinase.Established Investigator of the American Heart Association  相似文献   

9.
Intracellular Ca2+ (Cai) signaling following the binding of surface receptors activates a Ca2+ permeable plasma membrane conductance which has been shown to be associated with store depletion in a number of cell types. We examined the activation of this conductance in human monocyte-derived macrophages (HMDMs) using whole-cell voltage-clamp techniques coupled with fura-2 microfluorimetry and characterized the importance of external pH (pHo) as a modulator of current amplitude. Current activation was observed following experimental maneuvers designed to deplete intracellular Ca2+-stores including: (i) dialysis of the cell with 100 m inositol 1,4,5-triphosphate (IP3), (ii) intracellular dialysis with high concentrations of the Ca2+ buffers EGTA and BAPTA, or (iii) exposure of the cell to the Ca2+-ATPase inhibitor thapsigargin (1 m). Currents associated with store depletion were inwardly rectifying with kinetics, inactivation, and selectivity that appeared similar irrespective of the mode of activation. Currents were Ca2+ selective with a selectivity sequence of Ca2+ > Sr2+ Mg2+ = Mn2+ = Ni2+. The Ca2+ influx current was modulated by changes in pHo; modulation was not produced as a consequence of changes in internal pH (pHi). External acidification led to a reversible reduction in current amplitude with a pKa at pH 8.2. Changes in pHo alone failed to induce current activation. These observations are consistent with a scheme by which changes in pHo, as would be encountered by macrophages at sites of inflammation, could change the time course and magnitude of the Cai transient associated with receptor activation by regulating the influx of Ca2+ ions.The authors wish to gratefully acknowledge the expert technical assistance of Weiwen Xie without whom the study could not have been completed. This work was supported by National Institutes of Health GM36823.  相似文献   

10.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

11.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

12.
The effects of phorbol esters and synthetic diglycerides on thrombin- and histamine-stimulated increases in inositol trisphosphate (IP3) and cytosolic free calcium ([Ca2+]i) were studied in cultured human umbilical vein endothelial cells (HEC). Thrombin (0.003–3.0 U/ml) and histamine (10?7–10?4 M) induced rapid increases in [Ca2+]i in suspended cells as monitored with the fluorescent calcium indicator fura-2. In [3H]myoinositol-labeled cells, both thrombin (3 U/ml)- and histamine (10?4 M)-induced IP3 increases (195% ± 6% and 98% ± 4%, respectively) occurred in less than 15 sec and were temporally correlated with [Ca2+]i increases. Brief incubations (5–60 min) with different protein kinase C activators [4-β-phorbol 12-myristate 13-acetate (1–100 nM), mezerein (100 nM), and sn-1,2 dioctanoylglycerol (0.1–10 μM)] attenuated agonist-induced increases in [Ca2+]i. These compounds also inhibited thrombin- and histaminestimulated IP3 formation, thus suggesting a tight coupling between phospholipase C activation and calcium flux in cultured HEC. Overall, these observations suggest that the pathway linking receptors to phospholipase C stimulation in human endothelial cells is sensitive to protein kinase C activation.  相似文献   

13.
The aim of the present study was to investigate possible changes of inositol 1,4,5-trisphosphate (IP3) mass in Torpedo cholinergic synaptosomes in conditions promoting stimulated acetylcholine (ACh) release. For this purpose, we used a radioreceptor IP3 mass assay and a chemiluminescent method for ACh detection. Torpedo cholinergic synaptosomes have consistent IP3 mass levels under resting conditions. The IP3 mass was neither modified by changes in external Ca2+ nor by a Ca2+-free medium containing EGTA. IP3 mass and ACh release, measured in the same conditions and in parallel, were increased by depolarization with high K+ and by the ionophores A-23187 and gramicidin-D in a manner dependent on external Ca2+ emphasizing that Ca2+ entry, independently of the influx mechanism involved, leads to an IP3 increase. The phospholipase Cβ inhibitors U-73122 and U-73343 reduced K+-stimulated IP3 levels while K+-evoked ACh release was almost completely blocked suggesting an additional effect of these drugs on depolarization-neurotransmitter secretion coupling. The effect reported showing an increase of IP3 by agents that stimulate ACh release may suggest a possible link between IP3 metabolism and the neurotransmitter release mechanism. However, such a link is probably not a direct one as implied by the results obtained with the inhibitors of phospholipase C. Copyright © 1996 Elsevier Science Ltd  相似文献   

14.
Summary Previous studies have shown the existence of functionally distinguishable inositol 1,4,5-trisphosphate- (IP3) sensitive and IP3-insensitive nonmitochondrial intracellular Ca2+ pools in acinar cells of the exocrine pancreas. For further characterization of Ca2+ pools, endoplasmic reticulum (ER) membrane vesicles were separated by Percoll gradient centrifugation which allowed us to distinguish five discrete fractions designatedP 1 toP 5 from the top to the bottom of the gradient. Measuring Ca2+ uptake and Ca2+ release with a Ca2+ electrode, we could differentiate three nonmitochondrial intracellular Ca2+ pools; (i) an IP3-sensitive Ca2+ pool (IsCaP), vanadate- and caffeine-insensitive, (ii) a caffeine-sensitive Ca2+ pool (CasCaP), vanadate- and IP3-insensitive, and (iii) a vanadate-sensitive Ca2+ pool (VasCaP), neither IP3- nor caffeine-sensitive, into which Ca2+ uptake is mediated via a Ca2+ ATPase sensitive to vanadate at 10–4 mol/liter. A fourth Ca2+ pool is neither IP3- nor caffeine- or vanadate-sensitive. Percoll fractionP 1 contained essentially the IsCaP, CasCaP and VasCaP and was mainly used for studies on Ca2+ uptake and Ca2+ release.When membrane vesicles were incubated in the presence of caffeine (2×10–2 mol/liter), Ca2+ uptake up to the steady state [Ca2+] did not appear to be altered as compared to the control Ca2+ uptake. However, in control vesicles spontaneous Ca2+ release occurred after the steady state had been reached, whereas cfffeine-pretreated vesicles did not spontaneously release Ca2+. Addition of IP3 at steady state [Ca2+] induced similar Ca2+ release followed by Ca2+ reuptake in both caffeine-pretreated and control vesicles. However, when caffeine was acutely added at steady state, Ca2+ was released from all Ca2+ pools including the IsCaP. Following Ca2+ reuptake after IP3 had been added, a second addition of IP3 to control vesicles induced further but smaller Ca2+ release, and a third addition resulted in a steady Ca2+ efflux by which all Ca2+ that had been taken up was released. This steady Ca2+ release started at a Ca2+ concentration between 5.5–8 ×10–7 mol/liter and could also be induced by the IP3 analogue inositol 1,4,5-trisphosphorothioate (IPS3) or by addition of Ca2+ itself. Ruthenium red (10–5 mol/liter) inhibited both caffeine-induced as well as Ca2+-induced but not IP3-induced Ca2+ release. Heparin (100 g/m) inhibited IP3-but not caffeine-induced Ca2+ release. The data indicate the presence of at least three separate Ca2+ pools in pancreatic acinar cells: the IsCaP, CasCaP and VasCaP. During Ca2+ uptake these Ca2+ pools appear to be separate. However, when steady state is reached, we assume that these Ca2+ pools come into contact and total Ca2+ release from all three pools can occur. The mechanism of this contact of Ca2+ pools is not clear but seems to be different from that induced by GTP in the presence of polyethylene glycol, which probably involves fusion of membranes.  相似文献   

15.
We examined the effect of tricyclic antidepressants on intracellular Ca2+ signalling in cultured cells of neuronal and glial origin. High concentrations of amitriptyline and desipramine increased the intracellular Ca2+ in PC-12 and U-87 MG cells. In PC-12 cells amitriptyline induced a biphasic rise in intracellular Ca2+. A rapid and transient increase due to release of Ca2+ from intracellular pools was followed by sustained elevation of [Ca2+]i due to influx from the extracellular medium. Desipramine evoked the Ca2+ release from intracellular pools but the influx of Ca2+ was not elicited. In U-87 MG cells both the drugs induced Ca2+ release from intracellular pools, however amitriptyline also induced a transient influx of Ca2+. To delineate the mechanisms involved in mobilization of Ca2+ by the drugs pharmacological agents that inhibit IP3 formation in cells and Ca2+ channel blockers were used and changes in [Ca2+]i and membrane potential were monitored. The results show that both the drugs release Ca2+ from IP3 sensitive pools by activation of phospholipase C and amitriptyline in addition activates a non specific cation channel in the plasma membrane of cells. Paradoxically at relatively lower concentrations (< 50 M) amitriptyline and desipramine inhibited the Ca2+ signal induced by adenosine triphosphate in both the cell types. Our data demonstrate that tricyclic antidepressants at different doses may have inhibitory or stimulatory effects on cellular Ca2+ signalling.  相似文献   

16.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   

17.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

18.
The phospholipase C (PLC; EC 3.1.4.3) activity in isolated plasma membranes of light-grown wheat (Triticum aestivum L. cv. Prelude) leaves was investigated. The activity against the polyphosphoinositides was strongly dependent on Ca2+ and was affected by the anionic detergent deoxycholate (DOC). In the presence of 20 M Ca2+ the PLC activity preferred phosphatidylinositol 4,5-bisphosphate (PIP2) over phosphatidylinositol 4-monophosphate (PIP) as a substrate. Instead, with 1 mM Ca2+ the enzyme clearly favoured PIP. In addition, the PIP2-PLC activity was increased by Mg2+ and in the presence of GTP, guanosine 5-(-thio)-triphosphate as well as ATP, CTP, guanosine 5-diphosphate and guanosine 5-(-thio)-diphosphate. Further analysis showed that a molybdate-sensitive phosphatase activity catalysing the dephosphorylation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is also associated with the plasma-membrane vesicles. Dephosphorylation of Ins(1,4,5)P3 was reduced in the presence of GTP or by inclusion of the unspecific phosphatase inhibitor molybdate. The results indicate the presence of a PIP2-PLC activity and the presence of a molybdate-sensitive phosphatase activity in wheat plasma-membrane vesicles.Abbreviations DOC deoxycholate - IDPase inosine 5-diphosphatase - InsPs inositol phosphates, the numbering at the end indicates the number of phosphate residues and when their positions on the inositol ring are known they are indicated in parentheses, i.e. - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PIP phosphatidylinositol 4-monophosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PLC phospholipase C This work was financially supported by grant from the Deutsche Forschungsgemeinschaft (DFG). M. C. Arz gratefully acknowledges the support of a Graduiertenstipendium des Landes Nordrhein-Westfalen (Germany). We wish to thank S. Laden and G.E. Grambow for assistance.  相似文献   

19.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

20.
20-Hydroxyecdysone (20E) triggers programmed cell death (PCD) and regulates de novo gene expression in the anterior silk glands (ASGs) of the silkworm Bombyx mori. PCD is mediated via a nongenomic pathway that includes Ca2+ as a second messenger and the activation of protein kinase C/caspase-3-like protease; however, the steps leading to a concomitant buildup of intracellular Ca2+ are unknown. We employed pharmacological tools to identify the components of this pathway. ASGs were cultured in the presence of 1 μM 20E and one of the following inhibitors: a G-protein-coupled receptor (GPCR) inhibitor, a phospholipase C (PLC) inhibitor, an inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, and an L- or T-type Ca2+ channel blocker. The T-type Ca2+ channel blocker inhibited 20E-induced nuclear and DNA fragmentation; in contrast, PCD was induced by 20E in Ca2+-free medium, indicating that the source of Ca2+ is an intracellular reservoir. The IP3R antagonist inhibited nuclear and DNA fragmentation, suggesting that the endoplasmic reticulum may be the Ca2+ source. Finally, the GPCR and PLC inhibitors effectively blocked nuclear and DNA fragmentation. Our results indicate that 20E increases the intracellular level of Ca2+ by activating IP3R, and that this effect may be brought about by the serial activation of GPCR, PLC, and IP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号