首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A radioimmunoassay for myeloperoxidase was established with the use of affinity-purified anti-(human myeloperoxidase) immunoglobulins. By the use of ion-exchange followed by immunoaffinity chromatography a preparation of immunoreactive, catalytically active myeloperoxidase was obtained from fresh human plasma. In non-denaturing gel electrophoresis, the plasma preparation showed about four catalytically active components of mobility very similar to that of the granulocyte enzyme. SDS/polyacrylamide-gel electrophoresis combined with protein blotting showed that the two polypeptides of strongest antigenicity in the plasma preparation corresponded in Mr to the large and the small subunits of the granulocyte enzyme. In addition, the plasma preparation contained a higher-Mr immunoreactive polypeptide, possibly a precursor form of the enzyme, together with another of Mr similar to that of the large subunit of eosinophil peroxidase.  相似文献   

2.
Subunit association in acetohydroxy acid synthase isozyme III.   总被引:2,自引:1,他引:1       下载免费PDF全文
Acetohydroxy acid synthase isozyme III (AHAS III) from Escherichia coli is composed of large and small subunits (encoded by the genes ilvI and ilvH) in an alpha 2 beta 2 structure. The large (61-kDa) subunit apparently contains the catalytic machinery of the enzyme, while the small (17-kDa) subunit is required for specific stabilization of the active conformation of the large subunit as well as for valine sensitivity. The interaction between subunits has been studied by using purified enzyme and extracts containing subcloned subunits. The association between large and small subunits is reversible, with a dissociation constant sufficiently high to have important experimental consequences: the activity of the enzyme shows a concentration dependence curve which is concave upward, and this dependence becomes linear upon the addition of excess large or small subunits. We estimate that at a concentration of 10(-7) M for each subunit (7 micrograms of enzyme ml-1), the large subunits are only half associated as the I2H2 active holoenzyme. This dissociation constant is high enough to cause underestimation of the activity of AHAS III in bacterial extracts. The true activity of this isozyme in extracts is observed in the presence of excess small subunits, which maintain the enzyme in its associated form. Reexamination of an E. coli K-12 ilvBN+ ilvIH+ strain grown in glucose indicates that AHAS III is the major isozyme expressed. As an excess of small subunits does not influence the apparent Ki for valine inhibition of the purified enzyme, it is likely that valine binds to and inhibits I2H2 rather than inducing dissociation. AHAS I and II seem to show a much lower tendency to dissociate than does AHAS III.  相似文献   

3.
The oxygen-tolerant membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha H16 consists of three subunits. The large subunit HoxG carries the [NiFe] active site, and the small subunit HoxK contains three [FeS] clusters. Both subunits form the so-called hydrogenase module, which is oriented toward the periplasm. Membrane association is established by a membrane-integral cytochrome b subunit (HoxZ) that transfers the electrons from the hydrogenase module to the respiratory chain. So far, it was not possible to isolate the MBH in its native heterotrimeric state due to the loss of HoxZ during the process of protein solubilization. By using the very mild detergent digitonin, we were successful in isolating the MBH hydrogenase module in complex with the cytochrome b. H(2)-dependent reduction of the two HoxZ-stemming heme centers demonstrated that the hydrogenase module is productively connected to the cytochrome b. Further investigation provided evidence that the MBH exists in the membrane as a high molecular mass complex consisting of three heterotrimeric units. The lipids phosphatidylethanolamine and phosphatidylglycerol were identified to play a role in the interaction of the hydrogenase module with the cytochrome b subunit.  相似文献   

4.
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.  相似文献   

5.
The small subunits of spinach ribulosebisphosphate carboxylase-oxygenase were isolated by mild acid precipitation of the hexadecameric holoenzyme. About one-third of the small subunits remained in the supernatant while the remainder, and all of the large subunits, were precipitated and irreversibly denatured. The spinach small subunits were able to reassemble with the large subunit octamer of ribulosebisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus ACMM 323, prepared as described previously (Andrews, T. J., and Ballment, B. (1983) J. Biol. Chem. 258, 7514-7518) to produce a catalytically active, hybrid enzyme. The heterologous small subunits bound an order of magnitude less tightly than homologous small subunits and the specific activity of the hybrid, when fully saturated with foreign small subunits, was about half that of the homologously reassembled or native Synechococcus enzyme. In addition, the Km(CO2) of the hybrid was about twice as high. However, the degree of partitioning between carboxylation and oxygenation was identical for the hybrid, the homologously reassembled, and the native Synechococcus enzymes and clearly less in favor of carboxylation than partitioning by the spinach enzyme. Therefore, this important facet of catalysis by ribulosebisphosphate carboxylase-oxygenase appears to be specified exclusively by the large subunit.  相似文献   

6.
Periplasmic membrane-bound [NiFe]-hydrogenases undergo a complex maturation pathway, including cofactor incorporation, subunit assembly, and finally twin-arginine-dependent membrane translocation (Tat). In this study, the role of the two accessory proteins HoxO and HoxQ in the maturation of the membrane-bound [NiFe]-hydrogenase (MBH) of Ralstonia eutropha H16 was investigated. MBH activity was absent in soluble as well as membrane fractions of cells with deletions in the respective genes. The absence of HoxO and HoxQ led to degradation of the small subunit precursor (preHoxK) of the MBH. The two accessory proteins directly interacted with preHoxK prior to assembly of active MBH dimer in the cytoplasm. MBH mutants with modified Tat signal peptides were disrupted in preHoxK/HoxO/HoxQ complex formation. Isolated HoxO and HoxQ proteins formed a complex in vitro with the chemically synthesized HoxK Tat signal peptide. Two functions of the two chaperones are discussed: (i) protection of the Fe-S cluster containing HoxK subunit under oxygenic conditions, and (ii) avoidance of HoxK export prior to dimerization with the large MBH subunit HoxG.  相似文献   

7.
Hydrogenovibrio marinus was suggested to have only membrane-bound hydrogenase (MBH). The change of cultivation pO2 did not affect the molecular species of hydrogenase expressed. We propose the MBH is grouped in class I [NiFe] MBH according to the subunit composition, size (Mw 38,000 and Mw 74,000 subunits) and N-terminal sequences of the subunits, and arrangement of the structural genes. Ni-requirement for the autotrophic growth on H2 also suggested the MBH is the Ni-containing type. Southern hybridization analysis using a part of the MBH gene showed a possibility of the presence of two highly homologous MBHs which were not separated by SDS-PAGE.  相似文献   

8.
p-Hydroxyphenylacetate decarboxylase from Clostridium difficile catalyses the decarboxylation of p-hydroxyphenylacetate to yield the cytotoxic compound p-cresol. The three genes encoding two subunits of the glycyl-radical enzyme and the activating enzyme have been cloned and expressed in Escherichia coli. The recombinant enzymes were used to reconstitute a catalytically functional system in vitro. In contrast with the decarboxylase purified from C. difficile, which was an almost inactive homo-dimeric protein (beta(2)), the recombinant enzyme was a hetero-octameric (beta(4)gamma(4)), catalytically competent complex, which was activated using endogenous activating enzyme from C. difficile or recombinant activating enzyme to a specific activity of 7 U.mg(-1). Preliminary results suggest that phosphorylation of the small subunit is responsible for the change of the oligomeric state. These data point to an essential function of the small subunit of the decarboxylase and may indicate unique regulatory properties of the system.  相似文献   

9.
When ribulose bisphosphate carboxylase-oxygenase from Synechococcus (strain RRIMP N1) was precipitated under mildly acidic conditions, most of its small subunits remained in solution. The precipitated enzyme readily redissolved at neutral pH and remained as an octamer of large subunits with some small subunits still attached. Optimum pH for this separation was 5.3 and disulfide-reducing reagents were not necessary. The fraction of small subunits removed by a single precipitation increased with increasing NaCl concentration. Catalytic activity of small subunit-depleted enzyme was linearly proportional to the fraction of small subunits remaining, while the carboxylase:oxygenase activity ratio and the affinity for CO2 remained constant. When isolated small subunits were added back to depleted enzyme preparations at neutral pH, reassociation occurred with return of catalytic activity. Under the usual assay conditions at pH 7.7, the binding constant of the small subunits was estimated to be about 10(-9) M. The small subunits also bound avidly to surfaces. However, loss of small subunits from the enzyme during the course of purification was minimal. The results are consistent with a simple model in which only those large subunits which have a small subunit bound to them are catalytically competent. Thus, an essential, even if indirect, role for the small subunits in catalysis is indicated.  相似文献   

10.
Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus annuus) or the cyanobacterium Synechococcus PCC6301, along with a selectable marker. Three stable lines of transformants were regenerated that had altered rbcL genes. Those containing the rbcL gene for cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase produced mRNA but no large subunit protein or enzyme activity. Those tobacco plants expressing the sunflower large subunit synthesized a catalytically active hybrid form of the enzyme composed of sunflower large subunits and tobacco small subunits. A third line expressed a chimeric sunflower/tobacco large subunit arising from homologous recombination within the rbcL gene that had properties similar to the hybrid enzyme. This study demonstrated the feasibility of using a binary system in which different forms of the rbcL gene are constructed in a bacterial host and then introduced into a vector for homologous recombination in transformed chloroplasts to produce an active, chimeric enzyme in vivo.  相似文献   

11.
Hydrogenovibrio marinus was suggested to have only membrane-bound hydrogenase (MBH). The change of cultivation pO2 did not affect the molecular species of hydrogenase expressed. We propose the MBH is grouped in class I [NiFe] MBH according to the subunit composition, size (Mw 38,000 and Mw 74,000 subunits) and N-terminal sequences of the subunits, and arrangement of the structural genes. Ni-requirement for the autotrophic growth on H2 also suggested the MBH is the Ni-containing type. Southern hybridization analysis using a part of the MBH gene showed a possibility of the presence of two highly homologous MBHs which were not separated by SDS-PAGE.  相似文献   

12.
Bacterial luciferase is a heterodimeric enzyme comprising two nonidentical but homologous subunits, alpha and beta, encoded by adjacent genes, luxA and luxB. The two genes from Vibrio harveyi were separated and expressed from separate plasmids in Escherichia coli. If both plasmids were present within the same E. coli cell, the level of accumulation of active dimeric luciferase was not dramatically less than within cells containing the intact luxAB sequences. Cells carrying the individual plasmids accumulated large amounts of individual subunits, as evidenced by two-dimensional polyacrylamide gel electrophoresis. Mixing of a lysate of cells carrying the luxA gene with a lysate of cells carrying the luxB gene resulted in formation of very low levels of active heterodimeric luciferase. However, denaturation of the mixed lysates with urea followed by renaturation resulted in formation of large amounts of active luciferase. These observations demonstrate that the two subunits, alpha and beta, if allowed to fold independently in vivo, fold into structures that do not interact to form active heterodimeric luciferase. The encounter complex formed between the two subunits must be an intermediate structure on the pathway to formation of active heterodimeric luciferase.  相似文献   

13.
W H Ward  A R Fersht 《Biochemistry》1988,27(15):5525-5530
Tyrosyl-tRNA synthetase from Bacillus stearothermophilus is a classical example of an enzyme with half-of-the-sites activity. The enzyme crystallizes as a symmetrical dimer that is composed of identical subunits, each having a complete active site. In solution, however, tyrosyl-tRNA synthetase binds tightly, and activates rapidly, only 1 mol of Tyr/mol of dimer. It has recently been shown that the half-of-the-sites activity results from an inherent asymmetry of the enzyme. Only one subunit catalyzes formation of Tyr-AMP, and interchange of activity between subunits is not detectable over a long time scale. Paradoxically, however, the kinetics of tRNA charging are biphasic with respect to [Tyr], suggesting that both subunits of the dimer are catalytically active. This paradox has now been resolved by kinetic analysis of heterodimeric enzymes containing different mutations in each subunit. Biphasic kinetics with unchanged values of KM for Tyr are maintained when one of the two tRNA-binding domains is removed and also when the affinity of the "inactive" site for Try is reduced by 2-58-fold. The biphasic kinetics do not result from catalysis at both active sites, but instead appear to result from two molecules of Tyr binding sequentially to the same site. A second molecule of Tyr perhaps aids the dissociation of Tyr-tRNA by displacing the tyrosyl moiety from its binding site. A monomer of the enzyme is probably too small to allow both recognition and aminoacylation of a tRNA molecule. This could explain the requirement for the enzyme to function as an asymmetric dimer.  相似文献   

14.
15.
A cDNA clone for the precursor form of the small subunit of wheat ribulose-bisphosphate carboxylase has been modified to allow the expression in Escherichia coli of a mature form of small subunit that lacks the transit peptide. Synthesis of the protein is controlled by a lac promoter, and translation is initiated from a lacZ ribosome binding site, giving rise to a small subunit with several beta-galactosidase amino acids fused to its N-terminus. A plasmid has been constructed that enables both wheat small subunits and maize large subunits to be synthesized in the bacterial cell, but using different promoters to allow independent expression of the rbcS and rbcL genes. When the small subunit is synthesized in the absence of the large subunit, it is found in the soluble fraction but the polypeptide is unstable and has a half-life of less than 15 min. Its size on sucrose gradients indicates a monomeric or dimeric form. When large subunit synthesis is induced in cells containing the small subunit, both subunits are found predominantly in the insoluble fraction and are fully stable for more than 120 min, suggesting that aggregation of the subunits may occur. The two subunits do not assemble together to form an active holoenzyme in vivo, even when nascent large subunits ware synthesized in a pool of mature small subunits. This indicates that other factors may be required to mediate the assembly of the higher plant enzyme.  相似文献   

16.
马铃薯AGPase大小亚基功能研究   总被引:2,自引:1,他引:1  
马铃薯 1,6 二磷酸腺苷葡萄糖焦磷酸化酶 (AGPase)是淀粉合成的限速酶 ,该酶有大、小两个亚基形成异源四聚体。总结了迄今为止已克隆的马铃薯AGPase大、小亚基编码基因、小亚基和底物结合位点的识别、以及大亚基异构调控因子结合位点识别的研究结果 ,提出了大小亚基非自然重组是深入研究AGPase的途径 ,建立体内条件下高效可靠代谢调控研究手段是AGPase研究所必需的。  相似文献   

17.
The two isozymes of choline acetyltransferase (Acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6) from head ganglia of Loligo pealei have been examined by polyacrylamide gel electrophoresis, gel chromatography, and equilibrium sedimentation in the ultracentrifuge. Inactivating antisera, prepared to both native and dithiothreitol-treated isozymes 1 and 2 of squid choline acetyltransferase, were used to demonstrate the immunologic identity of isozymes 1 and 2. Each isozyme appeared to contain two non-identical catalytically active subunits, with molecular weights of approx. 37 000 and 56 000. A staining method was developed to visualize choline acetyltransferase activity in acrylamide gels. The method is based on the formation of a precipitate of manganese ferrocyanide at sites where free coenzyme A is released. By this method, and by analysis of gel slices, it was found that each of the isozymes can form aggregates of several different sizes. The formation of immune precipitates with the aggregates showed the identity of the multiple bands of enzyme protein resolved on disc gel electrophoresis. Isozyme 1 was most active as a small aggregate, whereas isozyme 2 was most active as a large aggregate. Both chromatography on Sephadex G-200 and isoelectric focusing yielded a number of active species with molecular weights ranging from 35 000 to 300 000. In addition, we demonstrated the dissociation of enzyme protein in the presence of 1.0 - 10(-2) M dithiothreitol, the formation of multiple precipitin bands by aged enzyme, and the identity of the different isoelectric fractions of each of the isozymes.  相似文献   

18.
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.  相似文献   

19.
Ribulose bisphosphate carboxylase from the procaryotic green alga, Prochloron (the symbiont of Lissoclinum patellum), has eight large and eight small subunits, and a low affinity for CO2, similar to that of cyanobacterial carboxylases. The small subunits were progressively removed from this carboxylase and from that from the cyanobacterium, Synechococcus ACMM 323, by twice-repeated, mild-acid precipitation. This procedure produced large-subunit octamers, greatly depleted in small subunits, as well as isolated small subunits. Catalytic activity of the large-subunit preparations reflected their residual small-subunit content. The two large-subunit preparations were reconstituted with both homologous and heterologous small subunits. The reassembled enzymes were catalytically competent in all cases. When fully saturated with small subunits, the hybrid enzymes were only about 20% less active than the homologously reconstituted enzymes. Heterologous reconstitution underscores the essential function of the small subunits in catalysis.  相似文献   

20.
The matrix of yeast mitochondria contains a chelator-sensitive protease that removes matrix-targeting signals from most precursor proteins transported into this compartment. The enzyme consists of two nonidentical subunits that are encoded by the nuclear genes MAS1 and MAS2. With the aid of these cloned genes, we have now overexpressed the active holoenzyme in yeast, purified it in milligram amounts, and studied its biochemical and physical properties. Atomic absorption analysis shows that the purified enzyme lacks significant amounts of zinc, manganese, or cobalt; if none of these metal ions is added during the assay, the enzyme is catalytically inactive but can still cleave substoichiometric amounts of substrate. The amino-terminal sequences of the two mature subunits were determined; comparison with the deduced amino acid sequences of the corresponding precursors revealed that the MAS1 and MAS2 subunits are synthesized with prepeptides composed of 19 and 13 residues, respectively, which have similar sequences. The enzyme is inhibited competitively by chemically synthesized matrix-targeting peptides; the degree of inhibition correlates with the peptides' targeting efficacy. Matrix-targeting peptides containing the cleavage site of the corresponding authentic precursor protein are cleaved correctly by the purified enzyme. A purified artificial precursor protein bound to the holoenzyme can be photocross-linked to the MAS2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号